نوع مقاله : مقاله پژوهشی
نویسندگان
گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه اصفهان،اصفهان،ایران
چکیده
طراحی جدول زمانبندی، اساساً از وظایف پیچیده و وقت گیر برای پرسنل مسئول میباشد که از طرفی انجام خودکار آن گامی در جهت کاهش بار کاری پرسنل و از سوی دیگر یک نمونه مطلوب برای امتحان روشهای برنامهریزی و ارضای محدودیتها در هوش مصنوعی است. در این پژوهش، ابتدا الگوریتمهای ژنتیک مطالعه و بررسی شده، سپس در مسأله بهینه سازی جدول زمانی دروس برای یک دانشکده فرضی مورد استفاده قرار گرفته است. در این رویکرد روند تکاملی پاسخها طی تکرار نسلها در یک الگوریتم ژنتیک، نهایتاً منجر به تولید یک جدول زمانبندی دروس خوش کیفیت خواهد گردید. در مرحله پیاده سازی، به کمک تغییراتی که در روند معمول الگوریتمهای ژنتیک صورت داده شد، نتایج بسیار خوبی در زمینه طراحی جداول زمانبندی دروس دانشگاهی حاصل گردیده است. اساس کار الگوریتم طراحی شده، حفظ کروموزومهای بهتر جمعیت و اعمال عملگرهای ژنتیکی بر روی بقیه کروموزومها به منظور بهبود آنها میباشد. در آزمونها، مقایسه بین الگوریتم ژنتیک عادی و الگوریتم پیشنهادی، طی چند مرحله، نقاط قوت الگوریتم پیشنهادی را مشخص کرد. ایدههای مطرح شده در این تحقیق قابل تسری به کاربردهای مشابه نیز خواهد بود.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Designing an Automated Timetable for University Courses Using Genetic Algorithms
نویسندگان [English]
- A.H. Monajemi
- S. Masoudian
- A. Estaki
- N. Nematbakhsh
Computer Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
چکیده [English]
Designing timetables, for example course timetables in an institute, is one of the most complicated and time-consuming challenges for personnel. Automating it, not only can help the personnel to manage their work better, but also can be considered as a desired sample to assess the ways of planning and to tackle the constraint satisfaction in artificial intelligence. In this paper, genetic algorithms are primarily studied and then it is applied for optimization of an imaginary faculty course timetable. The new designed algorithm is based on keeping the better chromosomes of the population and employing genetic operators on the others in order to improve the overall quality of genes. Some other amendments are also carried out to develop a more capable genetic algorithm for TT applications, compared to the standard one. According to the tests, the new GA algorithm will be more successful in generating high fidelity TTs which do not break any hard constraint. The proposed ideas, in this approach are applicable in other similar situations.
کلیدواژهها [English]
- Scheduling tables
- planning
- genetic algorithms
- optimization
- satisfaction constraints
ارسال نظر در مورد این مقاله