ﻣﻨﺎﺑﻊ ﻓﺎرﺳﯽ - رﯾﺤﺎﻧﯽ، اﺑﺮاﻫﯿﻢ .ﻣﻌﺮﻓﯽ ﻧﻈﺮﯾﻪ ﭘﯿﺎژه و ﻧﻈﺮﯾﻪ ﻓﻦ ﻫﯿﻠﯽ [١] ﻓﻦ ﻫﯿﻠﯽ در ﻣﻮرد ﯾﺎد ﮔﯿﺮی ﻫﻨﺪﺳﻪ، رﺷﺪ آﻣﻮزش رﯾﺎﺿﯽ، .80 ﺷﻤﺎره ی رﯾﺤﺎﻧﯽ، اﺑﺮاﻫﯿﻢ .ﭼﯿﺴﺘﯽ ﺗﻮاﻧﺎﯾﯽ ﻓﻀﺎﯾﯽ، رﺷﺪ آﻣﻮزش [2] رﯾﺎﺿﯽ، ﺷﻤﺎره .85 ی
ﻣﻨﺎﺑﻊ اﻧﮕﻠﯿﺴﯽ [3] Hopkins R., Knots (Pocket Guide Series), Thunder Bay Press, 2003. [4] Adams C., The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society (September, 2004). [5] Del Grande, J. Spatial sense, Arithmetic Teacher Vol. 37.6, pp. 14-20, 1990. [6] Kate Bennie, “Shape and space”, An approach to the study of geometry in intermediate phase. ttp://academic.sun.ac.za/mathed/Malati/Files/Ge ometry 982.pdf. [7] Jones K., Critical Issues in the Design of the School Geometry Curriculum. Invited paper in Bill Barton(Ed), Readings in Mathematics Education. Auckland, New Zealand: University of Auckland, 2000 . http://www.soton.ac.uk/~dkj/geompub.html
[8] Geometry Working Group, A report on the meeting at the King’s College, University of London, 28’t’ February Convenor: Keith Jones, University of Southampton, UK, Theoretical Frameworks for the Learning of Geometrical Reasoning, 1998. http://www.soton.ac.uk/~dkj/bsrlmgeom/reports /K_Jones_Jan_Feb_1998.pdf [9] Des Pawson Handbook Of Knots, 1998. [10] Penn R., The Everything Knots Book: Step-ByStep Instructions for Tying Any Knot (Everything Series), 2004. [11] Bigon M., Regazzoni G., The Morrow Guide to Knots, 1982. [12] Dworth G., The Complete Book of Knots (Complete), The Lyons Press, 1997. [13] Knots on the Web. http://www.earlham.edu/~peters/knotlink.htm [14] The KnotPlot Site. http://www.cs.ubc.ca/nest/imager/contributio ns/scharein/KnotPlot.html [15] De Witt Sumners, Lifting the Curtain: Using Topology to Probe the Hidden Action of Enzymes. http://www.ams.org/notices/199505/sumners. pdf [16] Adams C., Furstenberg E., Li J., Schneider J., "Exploring Knots" in Mathematics Teacher, Vol. 90, No. 8, Nov. 640-646, 652, 1997. [17] Jozef Przytycki, 3-coloring and other elementary invariants of knots. http://www2.mat.dtu.dk/events/uk?id=3 [18] Adams C., Why knot? : An introduction to the mathematical theory of knots, Key College Publishing, 2004.
ﻣﻨﺎﺑﻊ روﺳﯽ [19] Антропов Д.М., Как завязывать узлы: 38 надежных испытанных узлов.- М.: Наука. Физматлит,1995. [20] Мантуров В.О., Лекции по теории узлов и их инвариантов. - М.: Эдиториал УРСС, 2001. [21] Розов Н.Х., Рейхани Э., Боровских А.В. Узлы в школе. Уроки развития пространственного мышления – М.:КДУ, 2007.
Send comment about this article