TVET
Sh. Ahmadi; H.R. Shahverdi; A. Shokouhfar
Abstract
The term NanoSteels is called to some special steels consisting of nanosize phases (i.e. ferrite, cementite, and austenite), grains, and carbides (e.g. vanadium and M2C) produced by nanotechnology. It is proof that exotic physical, mechanical, and magnetic properties can be obtained from nanostructured ...
Read More
The term NanoSteels is called to some special steels consisting of nanosize phases (i.e. ferrite, cementite, and austenite), grains, and carbides (e.g. vanadium and M2C) produced by nanotechnology. It is proof that exotic physical, mechanical, and magnetic properties can be obtained from nanostructured steels. Fabrication methods of nanostructure steels can be divided into two main categories, SPD (severe plastic deformation) and melt base (crystallization from amorphous state) methods. Among all of the severe plastic deformation techniques (i.e. ECAP, HPT, and ARB), equal channel angular pressing (ECAP) is especially attractive because it can economically produce bulk of ultra- fine grain (UFG) materials. On the other hand, crystallization from amorphous state in bulk metallic glasses is a unique approach toward the mass production of nanostructure ferrous alloys. In the experimental process, crystallization of α – Fe phase during annealing process of Fe55Cr18Mo7B16C4 bulk amorphous alloy has been evaluated by X- ray diffraction and TEM observations. It is known from the TEM observations that crystalline α – Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology.
TVET
A. Rezaei; S. Ahmadi; A. Shokouhfar
Abstract
In this research, dynamic recrystallization of an Al-Li alloy was investigated in two temperatures, i.e. 350°C and 400°C. Wedge samples were subjected to hot rolling deformation in high temperature and one passes. For wedge specimens, reduction up to 70% was considered. Results showed that grain ...
Read More
In this research, dynamic recrystallization of an Al-Li alloy was investigated in two temperatures, i.e. 350°C and 400°C. Wedge samples were subjected to hot rolling deformation in high temperature and one passes. For wedge specimens, reduction up to 70% was considered. Results showed that grain size of the specimens after hot rolling decreases from 100μm to 30μm because of dynamic recrystallization phenomenon. Furthermore, it is observed that critical reduction for starting dynamic recrystallization was 50% and 40% in 350°C and 400°C respectively.
TVET
S. Ahmadi; A. Shokouh Far; M.R. Abutalebi; A. Rezaee
Abstract
Aluminum-lithium alloys are among the ultra-lightweight and workable alloys that have replaced some air alloys (such as 2000 and 7000 groups) due to their higher elastic modulus and lower specific gravity. Increasing the mechanical properties of these alloys using various thermal-mechanical methods (Thermo ...
Read More
Aluminum-lithium alloys are among the ultra-lightweight and workable alloys that have replaced some air alloys (such as 2000 and 7000 groups) due to their higher elastic modulus and lower specific gravity. Increasing the mechanical properties of these alloys using various thermal-mechanical methods (Thermo Mechanical) has always been considered by researchers. Creating GP regions through low temperature aging processes has a great impact on the physical and mechanical properties of aluminum-lithium alloys. In this research, in the first part of the experiments, by performing natural aging and artificial aging at a temperature of 100 اد C, the formation and impact of these areas on the properties of the alloy were investigated. In the second part of the experiments, the precipitation of phase T1 during the aging process and the effective effect on the optimal time of the aging process at temperatures C150 and C190 for a sample of aluminum-copper-copper-lithium alloy sheet have been investigated. The results show that the formation of GP areas in the structure increases the hardness, strength and special strength of the alloy and by performing the aging process at higher temperatures and forming stable sediments, the process of increasing the hardness and strength continues while the special strength of the alloy decreases. It was found that the change in energy level in the range C250 to C300 is related to the deposition of phase T1 and the change in energy level in the temperature range C450 to C305 due to its dissolution in the alloy structure. The energy of the formation and dissolution activations of phase T1 in this study was calculated to be (kj / mol) 1/122 and (/ mol (kj3 / 130), respectively, which is equal to the activation energy of the penetration of the constituent elements of this phase (copper and lithium) in the network structure. It is aluminum.