شخصی‌سازی محیط یادگیری الکترونیکی براساس خودکارامدی یادگیرنده

نوع مقاله: مقاله پژوهشی

نویسندگان

1 تربیت مدرّس

2 دانشگاه تربیت مدرس

چکیده

هدف از پژوهش حاضر طراحی و پیاده‌سازی سامانة آموزشیاری هوشمندی است که مدل یادگیرندة آن شامل ویژگی‌های خودکارامدی تحصیلی و سبک یادگیری، دو ویژگی مؤثر در یادگیری است. خودکارامدی تحصیلی به‌صورت خودکار و با طراحی سامانة فازی براساس رفتارهای یادگیرنده و سبک یادگیری از طریق پرسش‌نامة فلدرـ سیلورمن که شامل 44گویه است، شناسایی شده‌اند. پس از شناسایی این ویژگی‌ها، راهبردهای آموزشی متناسب با آنها ارائه و در سامانه‌ای هوشمندی به‌نام «پِرلِس» در محیطی واقعی پیاده‌سازی شده و اثرگذاری آن در بهبود عملکرد یادگیرندگان و رضایت آنان از سامانه مورد ارزیابی قرار گرفته است. جامعه مورد بررسی شامل 23 نفر با میانگین سنی 24.56 سال بوده است. ارزیابی محیط شخصی‌شده نشان می‌دهد که درنظرگرفتن ویژگی‌های کاربردی در مدل یادگیرنده و ارائۀ درس‌پار‌ها و توصیه‌های متناسب با این ویژگی‌ها، به پیشرفت تحصیلی 75% از یادگیرندگان منجر شده و‌ رضایت تحصیلی آنان را به دنبال داشته است. . ضمن اینکه بررسی‌ِ مدت زمان حضور یادگیرندگان در محیط شبکه قبل از استفاده از پِرلس و پس از آن تفاوت معناداری(سطح معنی‌داری=0/05) را نشان نمی‌دهد. نتایج بدست‌آمده بیانگر آن است که سامانۀ جدید آموزشیاری، علاوه‌بر موفقیت تحصیلی یادگیرنده، افزایش تمایل یادگیرندگان را برای استفاده از سامانه به‌دنبال داشته است. پیشنهاد می‌شود درپژوهش‌های آتی ویژگی‌های دیگرِ مؤثر در آموزش همچون سبک شناختی، احساس، شخصیت به‌منظور ارائة محیط شخصی‌شده برای یادگیرندگان مورد توجه قرار گیرد.

چکیده تصویری

شخصی‌سازی محیط یادگیری الکترونیکی براساس خودکارامدی یادگیرنده

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Personalizing e-Learning environment based on learner’s self-efficacy

نویسندگان [English]

  • Fatemeh Zarrin 1
  • Gh. Montazer 2
1 Tarbiat Modares
2 Tarbiat Modares Uni.
چکیده [English]

The purpose of this article is to design an intelligent tutoring system. The learning model of the proposed system includes features of academic self-efficacy and learning style. Academic self-efficacy has been automatically identified by designing of a fuzzy system based on learners' behavior and learning style through the questionnaire of Felder-Silverman which contains 44 question. After identification of these features, Proportional education strategies are presented and implemented in tutoring system in a real environment. The effectiveness of the proposed tutoring system is evaluated in terms of learners' operation by investigation of their satisfaction from system. The results show that considering functional characteristics in learning model, presenting some learning objects and proportional recommendations to the characteristics, results in 75% learners' educational progress and their educational satisfaction. Moreover, evaluation of the time passed in the e-Learning environment before and after using Perles doesn’t show a significant difference. Results show that the designed intelligent tutoring system based on the learner model and educational strategies, has led not only to the educational success of the learners but also to increase in their enthusiasm in using the system. Considering other effective and cognitive features in learning is highly recommended inorder to provide a personalized environment.

کلیدواژه‌ها [English]

  • Keywords: E-Learning
  • Personalization
  • intelligent tutoring systems
  • Learning model
  • Self-efficacy

[1] Yilmaz, R. (2016). Knowledge sharing behaviors in e-learning community: Exploring the role of academic self-efficacy and sense of community. Computers in Human Behavior, 373-382.

[2] Rahmati, Z. (2015). The Study of Academic Burnout in Students with High and Low Level Of Self-Efficacy. Procedia - Social and Behavioral Sciences, 49-55.

[3] Müller, N. M., & Seufert, T. (2018). Effects of self-regulation prompts in hypermedia learning on learning performance and self-efficacy. Learning and Instruction, 58, 1-11.

[4] Tavakolizadeh, J., Tabari, J,. & Akbari, A. (2015). Academic self-efficacy: predictive role of attachment styles and meta-cognitive skills. Procedia - Social and Behavioral Sciences. 113-120.

[5] Hermita, M., & Thamrin, W. P. (2015). Metacognition toward academic self-efficacy among Indonesian private university scholarship students. Procedia-Social and Behavioral Sciences, 171, 1075-1080.

[6] Zonoubi, R., Rasekh, A. E., & Tavakoli, M. (2017). EFL teacher self-efficacy development in professional learning communities. System, 66, 1-12.

[7] Gheibi, M., Arefi, M., & Danesh, E. (1391). The Relationship between Learning Styles and Self-efficacy of Students in Academic Groups. Applied Psychology.6(1), 53-69.[in persian].

[8] Panadero, E., Jonsson, A., & Botella, J. (2017). Effects of self-assessment on self-regulated learning and self-efficacy: Four meta-analyses. Educational Research Review, 22, 74-98.

[9] Stracke, E. (2016). Language learning strategies of Indonesian primary school students: In relation to self-efficacy beliefs. System, 60, 1-10.

[10] Hodges .C.B. 2008 . Self-efficacy in the context of online learning environments: A review of the literature and directions for research. Performance Improvement Quarterly. 20(3-4), 7-29.

[11] Kim, Y., & Baylor, A. L.2006. A social-cognitive framework for pedagogical agents as learning companions. Educational Technology Research and Development. 54(6), 569–596.

[12] Jackson, J. W.2002. Enhancing self-efficacy and learning performance. Experimental Education, 70(3), 243–254.

[13] Visser, L., Plomp, T., Amirault, R., & Kuiper,W. (2002). Motivating students at a distance:The case of an international audience. Educational Technology Research and Development. 50(2): 94–110.

[14] Ice P, Curtis R, Phillips P, Wells J. 2007. Using asynchronous audio feedback to enhance teaching presence and students' sense of community. Journal of Asynchronous Learning Networks, 11(2), 3-25.

[15] Honicke, Toni, & Jaclyn Broadbent. 2016.The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review. 63-84.

[16] Komarraju, M., & Nadler, D. (2013). Self-efficacy and academic achievement: Why do implicit beliefs, goals, and effort regulation matter?. Learning and Individual Differences, 25, 67-72.

[17] Liyanage, M. P. P., KS, L. G., & Hirakawa, M. (2016). Detecting learning styles in learning management systems using data mining. Journal of Information Processing, 24(4), 740-749.

[18] Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in human behavior, 55, 1185-1193.

[19] Moallem,M. (2006). Applying learning styles in an online course. Retrieved from http://www.thefreelibrary.com

[20] Sun, S., Joy, M,. & Griffiths, N. (2007). The use of learning objects and learning styles in a multi-agent education system. Journal of Interactive Learning Research, 18(3): 381–398.

[21] Ghorbani, F., & Montazer, Gh. .A. (2015). E-learners’ personality identifying using their network behaviors. Computers in Human Behavior, 51, 42-52.

[22] McQuiggan. S. W, B. W. Mott, & J. C. Lester.2008. Modeling Self-Efficacy in Intelligent Tutoring Systems: An Inductive Approach. User modeling and user adapted interaction journal.81-123.

[23] Komarraju, M., Karau.S.J. (2005). The relationship between the big five personality traits and academic motivation. Personality and Individual Differences, 39, 557–567.

[24] Rezaei, M.S. and Montazer, G.A., 2016. An automatic adaptive grouping of learners in an e-learning environment based on fuzzy grafting and snap-drift clustering. International Journal of Technology Enhanced Learning, 8(2), 169-186.