بررسی درک رویه ای و ساختاری دانش آموزان دوره متوسطه اول در عبارت های جبری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 'گروه ریاضی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران، ایران

2 گروه ریاضی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، تهران مرکزی، تهران، ایران

چکیده

عبارت های جبری بخش مهمی ازجبر است و درک عمیق این مفهوم و کسب مهارت دست ورزی با عبارت های جبری بستر لازم برای حل مسائل جبری را ایجاد می کند. هدف از پژوهش حاضر، بررسی درک دانش اموزان پایه های تحصیلی هفتم، هشتم و نهم در عبارت های جبری است. تعداد 400 نفر از دانش آموزان پایه های هفتم،هشتم و نهم شهر تهران به روش نمونه گیری خوشه ای چند مرحله ای انتخاب شدند. آزمونی محقق ساخته طراحی و اجرا گردید. پس از تجزیه و تحلیل داده ها، به منظور تصریح و تفسیر درک دانش آموزان با تعداد 15 نفر از آنها مصاحبه نیمه ساختاری انجام گرفت. نتایج حاصل از این آزمون و مصاحبه نشان داد که اکثر دانش اموزان درک ساختاری ضعیفی از عبارت های جبری دارند و آن ها را صرفا به صورت رویه ای درک کرده اند. افزایش پایه های تحصیلی، تقریبا در ارتقای درک ساختاری تاثیری نداشته است، اما درک رویه ای با افزایش پایه ها ارتقا می یابد.

چکیده تصویری

بررسی درک رویه ای و ساختاری دانش آموزان دوره متوسطه اول در عبارت های جبری

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the procedural and structural conception of algebraic expressions of seventh, eighth, ninth grades students

نویسندگان [English]

  • Fatemeh Zahra Heidari 1
  • Nasim Asghary 2
1 Department of mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, Tehran,Iran.
2 Department of mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran
چکیده [English]

Algebraic expressions are the important part of Algebra and it's deep understanding necessory for solving algebraic problems .The purpose of this study was to investigate students' understanding of the 7th, 8th and 9th grade of algebraic expressions. 400 students were selected by multistage cluster sampling from 7th, 8th and 9th grades students, in Tehran. A researcher-made test was designed and implemented. Out of 400 students, 15 students were selected and semi-structured interviews were conducted in order to clarify and interpret students' perceptions. The results of the test and interviews showed that most students have a poor structural understanding of algebraic expressions and they have understood them merely procedurally. Increasing academic bases did not almost improve structural understanding, but procedural understanding improves with increasing levels.

کلیدواژه‌ها [English]

  • Algebra
  • Algebraic expressions
  • Procedural concept
  • structural concept
  • Sfard’s theortical framewok

[1] Ladson-Billings, G. (1998). Just what is critical race theory and what's it doing in a nice field like education? International Journal of Qualitative Studies in Education, 11(1), 7-24.

[2] Asghari N. Developing a model to enhance elementary teachers’ ability to foster functional thinking and algebraic reasoning in elementary students. CSTP. 2014; 2 (3) :141-162 [in Persian]

[3] Kieran, C. (1992). The learning and teaching of school algebra, In D. A. Grouws (Ed.), Handbook of re-search on mathematics teaching and learning. Reston, V A: NCTM.

[4] Bell, A. (1996). Problem solving approached to alge-bra: Two aspects. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 167-186). Dordrecht: Kluwer.

[5] Kaput, J. J. (1995). A research base supporting long term algebra reform. In D. T. Owens, M. K. Reed, & G. M. Millsaps (Eds.), Proceedings of the Seventeenth An-nual Meeting of the North American Chapter of the In-ternational Group for the Psychology of Mathematics Education (Vol. 1, pp. 7194). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environ-mental Education.

[6] Kaput, J. K. (2000).Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. Dartmouth, MA: National Center for Improving Student Learning and Achievement in Mathematics and Science.

[7] Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification? The case of algebra. Educational Studies in Mathematics, 26(26), 191–228.

[8] Küchemann, D. (1981). ‘Algebra’, in K. Hart (ed.), Children Understands of Mathematics: 11–16, Murray, London, pp. 102–119.

[9] MacGregor, M., & Stacey, K. (1997). Students under-standing of algebraic notation: 11-15. Educational Stud-ies in Mathematics, 33. pp.1–19.

[10] Philipp, R. A., 1992. The many uses of algebraic variables, Mathematics Teacher, 85, 7, 557–561.

[11] Stephens, A. C. (2005). Developing students' under-standings of variable, Mathematics teaching in the mid-dle school, 11(2), 96-100

[12] Wagner, S. (1983).What is these things called varia-bles? Mathematics Teacher, 76, 474478.

[13] Swan, M. (2000). Making sense of algebra, Mathe-matics Teaching, (171), 16-19

[14] Van Ameron, B. (2003). Focusing on informal strat-egies when linking arithmetic to early algebra. Educa-tional Studies in Mathematics, 54, 63 - 75.

[15] Liebenberg, R., Linchevski, L., Oliver, A., & Sasman, M. (1998). Laying the foundation for algebra: develop-ing an understanding of structure, Proceedings of the Fourth Annual Congress of the Association for Mathe-matics Education of South Africa (pp. 276-282). Pieters-burg, South Africa

[16] Banerjee, R., & Subramaniam, K. (2011) evolution of a teaching approach for beginning algebra. Educa-tional Studies in Mathematics, 80, 351–367.

[17] Booth, L. R., & Watson, J. (1990). Learning and teaching algebra. The Australian Mathematics Teacher, 46(3), 12 – 14

[18] Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early algebra is not the same as algebra early. In Algebra in the early grades (pp. 235-272). New York: Lawrence Erlbaum.

[19] Novotná, J., & Hoch, M. (2008). How structure sense for algebraic expressions or equations is related to structure sense for abstract algebra. Mathematics Education Research Journal, 20(2), 93-104.

[20] Warren, E. (2003). The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15, 122-137.

[21] Kieran, C. (1992). The Learning and Teaching of School Algebra. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 390-419). New York: Macmillan Publishing Company.

[22] Welder, R. M. (2012). Improving algebra preparation: Implications from research on student misconceptions and difficulties. School Science and Mathematics 112 (4), 255 – 264.

[23] Sfard, A. (1994). Reification as the birth of metaphor. For the Learning of Mathematics, 14 (1), 44-55.

[24] Capraro, M. M., & Joffrion, H. (2006). Algebraic equations: Can middleschool students meaningfully translate from words to mathematical symbols? Reading Psychology, 27, 147-164

[25] National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.

[26] Sfard, A. (1991). On the dual nature of mathemati-cal conceptions: reflections on process and objects as different sides of the same coin. Educational Studies in Mathematics, 1-36.

[27] Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Charlotte, NC: In-formation Age.

[28] Kieran, C. (1996). The changing face of school al-gebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), 8th International Congress on Math-ematical Education: Selected lectures (pp. 271-290). Seville, Spain: S.A.E.M. Thales.

[29] Radford, L. (2001). The historical origins of algebra-ic thinking. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 13-36). Dordrecht, the Netherlands: Kluwer Academic.

[30] Kieran C. (2004). The Core of Algebra: Reflections on its Main Activities. In: Stacey K., Chick H., Kendal M. (Eds) The Future of the Teaching and Learning of Alge-bra The 12thICMI Study. New ICMI Study Series, vol 8. Springer, Dordrecht