مقایسه تأثیر الگوهای طراحی آموزشی مریل و گانیه بر بار شناختی، یادگیری و بهره وری آموزشی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 'گروه علوم تربیتی، دانشگاه سید جمال الدین اسدآبادی

2 گروه علوم تربیتی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

چکیده

هدف پژوهش حاضر مقایسه تأثیر الگوهای طراحی آموزشی مریل و گانیه بر بار شناختی، یادگیری و بهره وری آموزشی دانش آموزان در درس علوم تجربی بود. این پژوهش از نوع نیمه آزمایشی با طرح پیش‌آزمون-پس‌آزمون با دو گروه آزمایش و یک گروه کنترل بود. جامعه آماری را کلیه دانش آموزان پسر پایه ششم ابتدایی شهر قزوین تشکیل می دادند. نمونه آماری شامل سه کلاس 30 نفره با استفاده از روش نمونه گیری در دسترس انتخاب و این کلاس ها بصورت تصادفی به عنوان گروههای آزمایش و کنترل در نظر گرفته شدند. مواد و ابزارهای پژوهش شامل چندرسانه‌ای های آموزشی، آزمون های یادگیری و نیز مقیاس سنجش بار شناختی بود. گروه آزمایش اول با چندرسانه‌ای مبتنی بر الگوی مریل، گروه آزمایش دوم با چندرسانه‌ای مبتنی بر الگوی گانیه و گروه کنترل با چندرسانه‌ای بدون الگو آموزش دیدند. برای تجزیه‌ و تحلیل داده‌ها از آزمون تحلیل کوواریانس (آنکوا) استفاده شد. نتایج نشان داد چندرسانه‌ای مبتنی بر الگوی طراحی آموزشی مریل در مقایسه با چندرسانه‌ای های مبتنی بر الگوی طراحی آموزشی گانیه و چندرسانه‌ای بدون الگو منجر به بار شناختی کمتر، یادگیری و بهره ‌وری آموزشی بیشتری شده است. همچنین، چندرسانه‌ای مبتنی بر الگوی طراحی آموزشی گانیه در مقایسه با چندرسانه‌ای بدون الگو منجر به بار شناختی کمتر و یادگیری و بهره‌ وری آموزشی بیشتری شد.

چکیده تصویری

مقایسه تأثیر الگوهای طراحی آموزشی مریل و گانیه بر بار شناختی، یادگیری و بهره وری آموزشی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparing the effects of Merrill & Gagne’s instructional design models on cognitive load, learning and instructional efficiency

نویسندگان [English]

  • Vahid Salehi 1
  • Behzad Ghanbari 2
1 Department of Educational Sciences, Sayyed Jamaleddin Asadabadi University
2 Department of Educational Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran.
چکیده [English]

The present study aimed to compare the effects of Merrill and Gagne's instructional design models on students' cognitive load, learning and instructional efficiency in Science lesson. The study was quasi-experimental with pretest and posttest design with two experimental and one control groups. The statistical population consisted of all male students of the sixth grade elementary school of Qazvin. The sample including three 30 students classes were selected through convenience sampling procedure and the classes randomly assigned to experimental and control groups. The materials and instruments included instructional multimedia contents, learning tests, and cognitive load assessment scale. The first experimental group studied the multimedia based on the Merrill model, the second group studied the multimedia based on the Gagne model and the control group studied non-model multimedia. Data were analyzed by using analysis of covariance (ANCOVA). The results showed that multimedia based on the Merrill instructional design model compared to multimedia based on Gagne instructional design model and non-model multimedia, has led to less cognitive load, more learning and instructional efficiency. Also, multimedia based on Gagne's instructional design model compared to non-model multimedia led to less cognitive load, more learning and instructional efficiency.

کلیدواژه‌ها [English]

  • Instructional multimedia
  • Instructional design model
  • Cognitive load
  • Learning
  • Instructional efficiency

[1] Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.

 

[2] Nückles, M., Hübner, S., Dümer, S., & Renkl, A. (2010). Expertise reversal effects in writing to learn. Instructional Science, 38, 237–258.

 

[3] Seufert, T., Schütze, M., & Brünken, R. (2009). Memory characteristics and modality in multimedia learning: An aptitude-treatment-interaction study. Learning and Instruction, 19, 28–42.

 

[4] Salehi, V.,  Moradimokhles, H., Ghasemtabar, S. A., Qarabaghi, H. (2017). Effect of Pre-Training on Nursing Students’ Intrinsic Cognitive Load, Learning and Instructional Efficiency. Research in medical science education, 9(3), 38-46. [In Persian]

 

[5] Norouzi, D., Razavi, A. (2016). Instructional design foundations. Tehran; Samt. [In Persian]

 

[6] Jonassen, D. (2004). Learning to solve problems: An instructional design guide. John Wiley & Sons.

 

[7]Fardanesh, H. (2012). Theoretical foundations of instructional technology. Tehran; Samt. [In Persian]

 

[8] Kalyuga, S. (2009). Managing Cognitive Load in Adaptive Multimedia Learning. New York: Hershey.

 

[9] Sweller, J.  Ayres, P. & Kalyuga, S. (2011). Cognitive load Theory. New York, Hershey.

 

[10]  Sweller, J., & Paas, F. (2017). Should self-regulated learning be integrated with cognitive load theory? A commentary. Learning and Instruction, 51, 85-89.

 

[11] Sweller, J. (2018). Measuring cognitive load. Perspectives on medical education, 7(1), 1-2.

 

[12] Kirschner, P. A., Sweller, J., Kirschner, F., & Zambrano, J. (2018). From cognitive load theory to collaborative cognitive load theory. International Journal of Computer-Supported Collaborative Learning, 13(2), 213-233.

 

 

[13] Plass, J. L., Moreno, R., Brunken, R. (2010). Cognitive load theory. New York: Cambridge University Press.

 

[14] Abeysekera, L., & Dawson, P. (2015). Motivation and cognitive load in the flipped classroom: definition, rationale and a call for research. Higher Education Research & Development, 34(1), 1-14.

 

[15] Moreno, R. , & Mayer, R. E. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19, 309–326.

 

[16] Sweller, J. (2011). Cognitive load theory. Psychology of learning and motivation (Vol. 55, pp. 37-76). Academic Press.

 

[17] Abdi, A., Rostami, M. (2018). The Effect of Instruction Based on Cognitive Load theory on Academic Achievement, Perceived Cognitive Load and Motivation to Learning in Science Courses. Journal of Instruction and Evaluation, 10(40), 43-67. [In Persian]

 

[18] Zare, M., Zarei Zavaraki, E., Amirteimoury, M., Sarikhani, R. (2016). Comparing the Extraneous Cognitive Load of Designing an Instruction with Merrill's Model between Instruction by Multimedia and Traditional Methods. Information and Communication Technology in Educational Sciences, 6(3(23)), 25-40. [In Persian]

 

[19] Camos, V., & Portrat, S. (2015). The impact of cognitive load on delayed recall. Psychonomic bulletin & review, 22(4), 1029-1034.

 

[20] Zare, M., Salari, M., & Sarikhani, R. (2016). The impact of educational strategies of cognitive load theory on extraneous cognitive load and learning in physiology course. Journal of Medical Education Development. 9(22): 44-52. [In Persian]

 

[21] Debue, N., & Van De Leemput, C. (2014). What does germane load mean? An empirical contribution to the cognitive load theory. Frontiers in psychology, 5, 1099.

 

[22] Plass, J. L., Chun, D. M., Mayer, R. E., & Leutner, D. (2003). Cognitive load in reading a foreign language text with multimedia aids and the influence of verbal and spatial abilities. Computers in Human Behavior, 19, 221–243.

 

[23] Pastore, R. (2012). The effects of time-compressed instruction and redundancy on learning and learners’ perceptions of cognitive load. Computers & Education, 58(1), 641-651.

 

[24][Mehrvarz, M., Moradi, M., Abdoli, S. (2014). Comparing the effect of teaching methods based on Dick & Carey’s instructional design model and Gagne’s instructional design model on students’ motivation and learning. Journal of Curriculum Research, 3(2), 73-93. [In Persian]

 

[25][Moradi, R., Khazaee, S., Karimi, R., Velayati, E. (2016). Impact of the multimedia instructional based instructional design model Ganyeh on learning and retention of mentally retarded students. Technology of Instruction and Learning, 2(5), 47-66. [In Persian]

 

[26] Paas, F., & van Merri¨enboer, J. J. G. (1993). The efficiency of instructional conditions: An approach to combine mental-effort and performance measures. Human Factors, 35, 737–743.