بررسی مؤلفه‌های موفقیت تولید و اشتراک محتوای آموزشی در اینستاگرام بر اساس تحلیل تعامل انسان و اطلاعات

نوع مقاله: مقاله پژوهشی

نویسندگان

علم اطلاعات و دانش شناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه فردوسی مشهد

چکیده

در مقاله حاضر با هدف بررسی مؤلفه‌های موفقیت تولید و اشتراک محتوا در صفحه‌های آموزشی یا با محتوای آموزشی اینستاگرام، تجربه‌های موفق در جلب نظر کاربران با بهره‌گیری از دو نظریه اشاعه نوآوری‌ها و درگیر کردن کاربر واکاوی شد. پژوهش کیفی و با روش تحلیل مضمون انجام شده است. 30 صفحه آموزشی به صورت نمونه هدف‌مند و بر اساس رویکرد افزارسنجی رقابتی از رویکردهای پژوهش معماری اطلاعات گزینش و از روش سه‌سویه‌سازی برای روایی و پایایی پژوهش استفاده شد. یافته‌های پژوهش نشان داد بر اساس روند نظریه اشاعه نوآوری‌ها و درگیر کردن کاربر، مؤلفه‌های متعددی وجود داشتند که باعث بهینه‌سازی جستجو و یافت‌پذیری اطلاعات بر اساس اطلاعات موجود در صفحه، رفتار برچسب‌گذاری اجتماعی، توجه به مشخصه‌های محتوا، شبکه‌سازی، و استفاده از فن توصیه‌یابی می‌شدند. نتایج پژوهش نشان داد تجربه‌های موفق در سه بعد بافت، محتوا و کاربر، مشخصه‌ها و مولفه‌های ویژه‌ای را به کار بستند که می‌تواند الگوی مناسبی برای تولیدکنندگان محتوا در این شبکه باشد.

چکیده تصویری

بررسی مؤلفه‌های موفقیت تولید و اشتراک محتوای آموزشی در اینستاگرام بر اساس تحلیل تعامل انسان و اطلاعات

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the components of the success in creating and sharing of educational content on Instagram based on the human information interaction analysis

نویسندگان [English]

  • Mohsen Nowkarizi
  • Fatemeh Taghipanahi
  • Mohammad Hossein Dayyani
KIS, Education and Psychology Faculty, Ferdowsi University of Mashhad
چکیده [English]

In this article, aiming at examining the components of the success in creating and sharing of content on Instagram educational pages or content, successful experiments to attract users were investigated through the use of two theories, the diffusion of innovations and user engagement. It was a qualitative research carried out by thematic analysis. 30 educational pages or content were used as a targeted sample based on a competitive benchmarking approach and used the triangulation method to assess the validity and reliability. The findings indicated that based on the theory of the diffusion of innovations and user engagement, there were several components that optimized the information search and findability based on the information on the page, social tagging behavior, attention to image characteristics, networking, and the recommendation seeking technique. The findings also indicated that successful experiments applied some specific features and components in three dimensions of context, content, and user which could be a good pattern for content creators on the network.

کلیدواژه‌ها [English]

  • Content
  • information sharing
  • information architecture
  • human information interaction
  • Instagram

[1] Marchionini, G. (2008). Human–information interaction research and development. Library & Information Science Research30(3), 165-174.

 

[2] Allen, B. (1997). Information needs: A person-in-situation approach. Proceedings of an international conference on Information seeking in context (pp. 111-122).  London, Taylor Graham Publishing.‏

 

[3] Kautz, H., Selman, B., & Shah, M. (1997). Referral Web: combining social networks and collaborative filtering. Communications of the ACM40(3), 63-65.‏

 

[4] Savolainen, R. (1995). Everyday life information seeking: Approaching information seeking in the context of “way of life”. Library & information science research17(3), 259-294.

 

[5] Krikelas, J. (1983). Information-seeking behavior: Patterns and concepts. Drexel library quarterly19(2), 5-20.‏

 

[6] Constant, D., Kiesler, S., & Sproull, L. (1994). What's mine is ours, or is it? A study of attitudes about information sharing. Information systems research5(4), 400-421.

 

[7] Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level supply chain. Management science46(5), 626-643.

 

[8] Chen, L., Yan, Z., Tang, W., Yang, F., Xie, X., & He, J. (2016). Mobile phone addiction levels and negative emotions among Chinese young adults: the mediating role of interpersonal problems. Computers in Human behavior55, 856-866.

 

[9] Chen, A., Lu, Y., Wang, B., Zhao, L., & Li, M. (2013). What drives content creation behavior on SNSs? A commitment perspective. Journal of Business Research66(12), 2529-2535.

 

[10] Choliz, M. (2010). Mobile phone addiction: a point of issue. Addiction105(2), 373-374.‏

 

[11] Cabral, J. (2008). Is generation Y addicted to social media. Future of children18, 125.

 

[12] Kuss, D. J., & Griffiths, M. D. (2011). Online social networking and addiction—a review of the psychological literature. International journal of environmental research and public health8(9), 3528-3552.

 

[13] Acquisti, A., & Gross, R. (2006). Imagined communities: Awareness, information sharing, and privacy on the Facebook. In International Workshop on Privacy Enhancing Technologies (pp. 36-58). Berlin, Springer.

 

[14] Navidi, Fatemeh. (2014). The role of social networks in users daily information behavior. Human information interaction2(1), 49-59. [In Persian].

 

[15] Syn, S. Y., & Oh, S. (2015). Why do social network site users share information on Facebook and Twitter?  Journal of Information Science41(5), 553-569.

 

[16] MachinMasteromatteo, J.D. (2010). Exploring user’s information behavior in social networks. Tallinn university. Retrieved from http://hdl.handle.net/10760/14954

 

[17] Adnan, W. A. W., Hassan, W. N. H., Abdullah, N., & Taslim, J. (2013). Eye tracking analysis of user behavior in online social networks. In: International Conference on Online Communities and Social Computing (pp. 113-119). Berlin, Springer.

 

[18] Almehmadi, F., Hepworth, M., & Maynard, S. (2014). A framework for understanding information sharing: an exploration of the information sharing experiences of female academics in Saudi Arabia. Information Research, 19(4). Retrieved from at: http://www .informatio nr.net /ir/ 19-4 /isic /isic01.html#.WEU45NV97cs.

 

[19] Chung, N., Nam, K., & Koo, C. (2016). Examining information sharing in social networking communities: Applying theories of social capital and attachment. Telematics and Informatics33(1), 77-91.

 

[20] Lee, E., Lee, J. A., Moon, J. H., & Sung, Y. (2015). Pictures speak louder than words: Motivations for using Instagram. Cyberpsychology, Behavior, and Social Networking18(9), 552-556.

 

[21] Sheldon, P., & Bryant, K. (2016). Instagram: Motives for its use and relationship to narcissism and contextual age. Computers in Human Behavior58, 89-97.

 

[22] Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and gratifications research. The public opinion quarterly37(4), 509-523.‏

 

[23] Rogers, E. M. (2010). Diffusion of innovations. New York: The free press.

 

[24] Rogers, E. M., & Shoemaker, F. F. (1971). Communication of Innovations; A Cross-Cultural Approach. New York: Collier MacMillan.

 

[25] Laurel, B. (1993). Computers  as theatre. Reading, Indiana: Pearson Education.

 

[26] Chapman, P., Selvarajah, S, & Webster, J. (1999). Engagement in multimedia training systems. In Proseedings of the 32nd Hawaii International Conference on System Sciences. (pp. 1-9). Washington DC, IEEE

 

[27] Beardsley, M. C. (1982). Intentions and interpretations: a fallacy revived. The Aesthetic Point of View: Selected Essays, 188-207.

 

[28] Stephenson, William. (1967). The Play theory of Mass Communication. Chicago: University of Chicago Press.‏

 

[29] Toms, E. G. (2002). Information interaction: Providing a framework for information architecture. Journal of the Association for Information Science and Technology53(10), 855-862.

 

[30] O'Brien, H. L., & Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the Association for Information Science and Technology, 59(6), 938-955.‏

 

[31] Heath. T. (2008). Information seeking on the web the trusted social networks: from theory to systems. The open university. Retrieved from http: http://tomheath.com/thesis/heath-thesis-information-seeking-trusted-social-networks.pdf.

 

[32] Lee, C. S., Bakar, N. A. B. A., Dahri, R. B. M., & Sin, S. C. J. (2015, December). Instagram This! Sharing Photos on Instagram. In International Conference on Asian Digital Libraries (pp. 132-141). Springer International Publishing.

 

[33] Giannoulakis, S., & Tsapatsoulis, N. (2015). Instagram Hashtags as Image Annotation Metadata.In IFIP International Conference on Artificial Intelligence Applications and Innovations (206-220). Berlin, Springer.

 

[34] Du Plessis, C. (2015, July). An exploratory analysis of essential elements of content marketing. In Proceedings of the Second European Conference on Social Media (122-129).‏ Retrieved from: http://hdl.handle.net/10500/18910.

http://uir.unisa.ac.za/bitstream/handle/10500/18910/ECSM2015_ElementsContentMarketing.pdf

 

 [35] Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. In Proceedings of the 21st international conference on World Wide Web, 519-528. Retrieved from:  https://arxiv.org/pdf/ 1201.4145.pdf

 

[36] Morville, P and L. Rosenfeld (2006). Information architecture for the World Wide Web. (3nd ed.). Sebastopol, Calif.: O’Reilly.

 

[37] Patton, M. Q. (1980). Qualitative research and evaluation methods. Book Qualitative Research and Evaluation Methods. California: Thousand Oaks.

 

[38] Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research17(4), 364.

 

[39] Tabatabaei, Amir. Hassani, Parkhideh. Mortazavi, Hamed. TabatabaeiChehr, Mahboobeh. (2013). Strategies to promote scientific accuracy in qualitative research. Journal of North Khorasan University of Medical Sciences5(3), 663-670. [In Persian].

 

[40] Gyarmati, L., & Trinh, T. A. (2010). Measuring user behavior in online social networks. IEEE Network24(5).26-31.

 

[41] O'Donovan, F. T., Fournelle, C., Gaffigan, S., Brdiczka, O., Shen, J., Liu, J., & Moore, K. E. (2013, July). Characterizing user behavior and information propagation on a social multimedia network. In Multimedia and Expo Workshops (ICMEW), 2013 IEEE International Conference on (pp. 1-6). IEEE.‏

 

[42] Haxby, J. V., Hoffman, E. A., &Gobbini, M. I. (2000).The distributed human neural system for face perception. Trends in Cognitive Sciences4(6), 223-233.‏

 

[43] Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature393, 440-442.‏

 

[44] Rahim, K., & Clemens, B. (2012). Organizational goals and performance measurement criteria for content marketing. Journal of Communication and Computer9(8), 896-904.‏