سنجش کارکرد یک سیستم کمک آموزشی مبتنی بر تکنولوژی واقعیت افزوده، در آموزش درس تأسیسات مکانیکی ساختمان رشته معماری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه معماری، دانشکده هنر و معماری دانشگاه بوعلی سینا

2 گروه معماری، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران

3 گروه کامپیوتر، دانشکده فنی مهندسی، دانشگاه بوعلی سینا

چکیده

پیشرفت روزافزون فناوری اطلاعات و تکنولوژی‌های قابل حمل در این زمینه، شرایطی را برای تغییر رویکرد و ابزارهای آموزشی مهیا کرده است. در این میان ابزارهای مبتنی بر تکنولوژی واقعیت افزوده، با ترکیب دنیای واقعی و دنیای مجازی، از ابزارهای مورد توجه محقّقین تکنولوژی آموزشی است. این تحقیق، که از نوع کاربردی بوده و از روش تحقیق کمّی بهره گرفته است، با هدف افزایش کارائی بازدیدهای متداول در آموزش دروس فنی رشته‌ی معماری، ابزاری مبتنی بر تکنولوژی واقعیت افزوده به کار گرفته است. این ابزار اطلاعات تکمیلی یک بازدید میدانی در آموزش درس تاسیسات مکانیکی ساختمان را به صورت اجزای مجازی ترکیب شده با دنیای واقعی، در اختیار دانشجویان قرار داده است. نتایج حاصل از به‌کارگیری این ابزار در یک گروه آزمایشی(38 نفر) و مقایسه با گروه کنترل(35 نفر)، از طریق پیش آزمون، آزمون پایانی و نظرسنجی‌ها، نشان داده است که این ابزار کمک آموزشی مسبّب افزایش میزان یادگیری دانشجویان از بازدید میدانی بوده است و در زمینه‌ی ایجاد رضایت از رویکرد یادگیری و کسب اعتبار دانشی بیشتر برای بازدیدهای میدانی، از دیدگاه دانشجویان، نیز موثر بوده است.

چکیده تصویری

سنجش کارکرد یک سیستم کمک آموزشی مبتنی بر تکنولوژی واقعیت افزوده، در آموزش درس تأسیسات مکانیکی ساختمان رشته معماری

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Functional measurement of a supplementary teaching system based on augmented reality technology for the course “building mechanical services and utilities” in architecture

نویسندگان [English]

  • shayesteh valadi 1
  • Saeid Alitajer 2
  • Hassan Khotanlou 3
1 architecture department, art and architecture faculty, bu-ali sina university
2 Department of Architecture, Faculty of Art and Architecture, BU-Ali Sina University, Hamadan, IRAN
3 computer department, engineering faculty, bu ali sina university
چکیده [English]

The growing advances in information technology (IT) and its relevant portable technologies have provided conditions for changes in the educational approach and tools. Hence tools based on augmented reality technology have attracted the attention of educational technology researchers, which combine the real world and the virtual world. This applied study with quantitative research method aims to enhance the efficiency of common visits in technical courses of architecture using a tool based on augmented reality technology. This tool provides students with the supplementary information on a field visit to teach the course “building mechanical services and utilities” in form of virtual components combined with the real world. The results of application of this tool in an experimental group (38 samples) and comparison with the control group (35 samples) through pre-test, post-test and surveys show that this supplementary teaching tool contributes to enhance the students’ learning through the field visits and it is more effective than field visits in order to provide the satisfaction of learning approach and higher scientific validity from the students’ point of view.

کلیدواژه‌ها [English]

  • Architecture education
  • Augmented Reality
  • building mechanical services
  • field visit
  • active learning

[1] Soltandoost, M. (2011). Mechanical Utilities for Architecture Students (2nd ed.). Tehran: Yazd Publications.[in Persian].

[2] sharples, M., Corlett, D., & Westmancott, O. (2002). The design and implementation of a mobile learning resource. Personal and Ubiquitous Computing, 6, 220-234.

[3] Hwang, G. J., Shih, Y. R., & Chu, H. C. (2010). A concept map approach to developing collaborative Mindtools for context-aware ubiquitous learning. British Journal of Educational Technology, doi:10.1111/j.1467-8535.2010.01102.x.

[4] Meza, S., Turk, Z., Dolenc, M. (2014). Component based engineering of a mobile BIM-based augmented reality system. Automation in Construction, 42, 1-12.

[5] Hwang, G. J., Tsai, C. C., & Yang, Stephen J. H. (2008). Criteria, strategies and research issues of context-aware ubiquitous learning. Journal of Educational Technology and Society, 11(2), 81–91.

[6] Dede, C. (2008). Theoretical perspectives influencing the use of information technology in teaching and learning. In J. Voogt, & G. Knezek (Eds.), International handbook of information technology in primary and secondary education (pp. 43–62). New York: Springer.

[7] Kugelmann, D., Stratmann, L., Nuhlen, N., Brok, F., Hoffmann, S., Samarbarksh, G., Pferschy, A., Heide, A. M., Eimannsberger, A, Fallavollita, P., Navab, N., & Waschke, J. (2018). An Augmented Reality magic mirror as additive teaching device for gross anatomy. Journal of Annals of Anatomy, 215, 71-77.

[8] Fonseca, D., Marti, N., Rodendo, E., Navarro, I., & Sanchez, A. (2014). Relationship between student profile, tool use, participation, and academic performance with the use of Augmented Reality technology for visualized architecture models. Journal of Computers in human behaviors, 31, 434-445.

[9] Cai, S., Wang, X., & Chiang, F. K. (2014). A case study of Augmented Reality simulation system application in chemistry course. Journal of Computers in human behaviors, 37, 31-40.

[10] Kamarainen, A. M., Metcalf, Sh., Grotzer, T, Browne, A., Mazzuca, D., Tutwiler, M., Sh., & Dede, Ch. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Journal of computers and education, 68, 545-556.

[11] Sommerauer, P., & Muller, O. (2014). Augmented Reality in informal learning environment: A field experiment in a mathematics exhibition. Journal of computers & Education, 79, 59-68.

[12] Chang, K.-E., Chang, C.-T., Hou, H.-T., Sung, Y.-T., Chao, H.-L., & Lee, C.-M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185-197.

[13] Prince, M. (2004). “Does active learning work? A review of the research.” Journal of Engineering Education, 93(3), 223–231.

[14] Santos et al. (2014). Augmented reality learning experiences: survey of prototype design and valuation Learning Technologies, IEEE Transactions on, 7 (1), 38–56.

[15] Mayer, R., E. (2009). Multimedia learning, Cambridge university press (2009).

[16] Falk, J. H. (1983). Field trips: a look at environmental effects on learning. Journal of Biological Education, 17(2), 137–142. Routledge.

[17] Hwang, G.-J., Chang, H.-F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56, 1023- 1031.

[18] Chu, H. C., Hwang, G. J., & Tsai, C. C. (2010a). A knowledge engineering approach to developing mindtools for context-aware ubiquitous learning. Computers & Education, 54(1), 289–297.

[19] Chu, H. C., Hwang, G. J., Tsai, C. C., & Tseng, J. C. R. (2010b). A two-tier test approach to developing location-aware mobile learning systems for natural science course. Computers & Education, 55(4), 1618–1627.

[20] Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.