ماهیت و منطق برنامه درسی رباتیک تربیتی در دوره ابتدایی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 ایران، تبریز، مدرس دانشگاه فرهنگیان فاطمه‌الزهرا

2 گروه مطالعات برنامه درسی دانشکده روان‌شناسی و علوم تربیتی، دانشگاه خوارزمی، تهران، ایران

3 دانشکده علوم انسانی، دانشگاه آزاد اسلامی واحد تهران غرب، ایران

چکیده

همزمان با تغییرات گسترده در اجتماع، استفاده از فناوری نیز گسترش یافته است. برای آماده‌سازی و مقابله مؤثر دانش‌آموزان با تحولات قرن حاضر، نیازمند طراحی و تدوین برنامه‌های درسی ویژه هستیم. رباتیک تربیتی، فناوری آموزشی پیشرفته‌ای است که مستلزم توجه ویژه است. در دهه گذشته، رباتیک تربیتی به مثابه یک ابزار ارزشمند در راستای شکوفاسازی و پرورش مهارت‌های شناختی/ اجتماعی دانش‌آموزان و پشتیبانی از یادگیری موضوعات علوم، ریاضیات، زبان و فناوری توجه و علاقه پژوهشگران و معلمان را جلب کرده است. هدف این نوشتار، تبیین جهت‌گیری فلسفی و مبانی رباتیک تربیتی در دوره ابتدایی است تا سیاست گذاران، مهندسان و برنامه‌ریزان بر اساس آن، الگوهای درسی را برای اجرا تدوین کنند. در این پژوهش، رباتیک تربیتی با استفاده از روش سنتزپژوهی مورد تحلیل و ترکیب قرار گرفت. اسناد و پژوهش‌های معتبر چهار دهه اخیر با استفاده از فن نمونه‌گیری هدفمند از نوع ملاک‌محور انتخاب شده و مورد واکاوی و دسته‌بندی قرار گرفت. یافته‌های سنتز حاکی از آن است که رباتیک در مدارس به دو صورت عمل می‌کند: الف) به منزله یک موضوع درسی مستقل؛ ب) یا به منزله یک توانمندساز آموزشی که در خدمت سایر موضوعات درسی است. توجیه منطقی رباتیک تربیتی، مبتنی بر نظریات سازنده‌گرایی شامل مبانی سه‌گانه معرفت‌شناختی (معرفت شخصی و چندرشته‌ای)، روان‌شناختی (توجه به انگیزش، خلاقیت و ...) و جامعه‌شناختی (تعامل، آینده‌نگری و ...) است.

چکیده تصویری

ماهیت و منطق برنامه درسی رباتیک تربیتی در دوره ابتدایی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The nature and rationale of the robotic curriculum in elementary school

نویسندگان [English]

  • Rahimeh Mansouri Gargar 1
  • Ali Hoseini Khah 2
  • Minoo Alemi 3
  • Zahra Niknam 2
1 educational sciences, FatematoZahra Farhangian University, Tabriz, Iran
2 Department of Curriculum Studies, Faculty of Psychology and Educational Sciences, Kharazmi University, Tehran, Iran
3 Humanities Faculty, West Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

As widespread changes have occurred in the community, the use of technology has also expanded. To effectively prepare for and cope with evolving of this century we need to design and develop special curricula. Educational robotics is an advanced technology that requires special attention. In the past few decades robotics has attracted the attention of researchers and teachers as a valuable tool in developing cognitive / social skills of students and in supporting the learning of subjects in science, mathematics, language, and technology. The purpose of this paper is to explain the philosophical orientation and educational robotics foundations at the primary school level so that policymakers, engineers and curriculum developers can formulate curriculum models for implementation. In this research, educational robotics was analyzed and synthesized using the synthesis research method. Valid documents and research from the last four decades have been selected and categorized using a criterion-based purposive sampling technique. Synthesis findings indicate that robotics in schools work in two ways as an independent subject and as an educational enabler serving other topics. Logical justification of it is based on constructivist, including epistemological (personal and multidisciplinary), psychological (attention to motivation, creativity and etc.) and sociological foundations (interaction, predictability and etc.).

کلیدواژه‌ها [English]

  • Educational Robotics
  • primary school
  • Curriculum
  • Curriculum rationale
  • Constructivism

[1] Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J.-J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1, 209-0015.

[2] Holmquist, S. K. (2014). A multi-case study of student interactions with educational robots and impact on Science, Technology, Engineering, and Math (STEM) learning and attitudes: University of South Florida.

[3] Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education: innovations and research, 5(3/4), 17.

[4] Lough, T. F., C. (2002). Robotics education: Teacher observations of the effect onstudent attitudes and learning. TIES Magazine.

[5] Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to motivate math, science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711.

[6] Ornstein, A. C., & Hunkins, F. P. (2016). Curriculum: Foundations, Principles, and Issues (7nd ed.): Pearson Education.

[7] Getz, D. (2012). Event studies: Theory, research and policy for planned events (2nd ed.). New York: NY: Routledge.

[8] Sandelowski, M., Voils, C. I., & Barroso, J. (2006). Defining and designing mixed research synthesis studies. Research in the schools: a nationally refereed journal sponsored by the Mid-South Educational Research Association and the University of Alabama, 13(1), 29.

[9] Cooper, H. M. (1998). Synthesizing research: A guide for literature reviews (Vol. 2): Sage.

[10] Cooper, H., Hedges, L. V., & Valentine, J. C. (2009). The handbook of research synthesis and meta-analysis: Russell Sage Foundation.

[11] Gall, M. D., Borg, W. R., & Gall, J. P. (1996). educational research: an introduction (Ahmad Reza Nasr Esfahani & et al., Trans. 7 ed. Vol. 1). Tehran: Samt. [In Persian [

[12] Ward, S. A. (1983). Knowledge structures and knowledge synthesis. In S. A. Ward & L. J. Reed (Eds.), Knowledge Structure and Use: Implications for Synthesis and Interpretation (pp. 21-42): Temple University Press.

[13] Thomaz, S., Aglaé, A., Fernandes, C., Pitta, R., Azevedo, S., Burlamaqui, A., . . . Gonçalves, L. M. (2009). RoboEduc: A pedagogical tool to support educational robotics. Paper presented at the Frontiers in Education Conference, 2009. FIE'09. 39th IEEE.

[14] De Cristoforis, P., Pedre, S., Nitsche, M., Fischer, T., Pessacg, F., & Di Pietro, C. (2013). A behavior-based approach for educational robotics activities. IEEE transactions on education, 56(1), 61-66.

[15] Liu, E. Z. F. (2010). Early adolescents' perceptions of educational robots and learning of robotics. British Journal of Educational Technology, 41(3).

[16] Resnick, M., Ocko, S., & Papert, S. (1988). LEGO, Logo, and design. Children's Environments Quarterly, 14-18.

[17] Lye, N. C., Wong, K. W., & Chiou, A. (2011). Framework for educational robotics: a multiphase approach to enhance user learning in a competitive arena Edutainment Technologies. Educational Games and VirtualReality/Augmented Reality Applications (pp. 317-325): Springer.

[18] Chin, K.-Y., Hong, Z.-W., & Chen, Y.-L. (2014). Impact of using an educational robot-based learning system on students’ motivation in elementary education. Learning Technologies, IEEE Transactions on, 7(4), 333-345.

[19] Chang, C.-W., Lee, J.-H., Chao, P.-Y., Wang, C.-Y., & Chen, G.-D. (2010). Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school. Educational Technology & Society, 13(2), 13-24.

[20] Meghdari, A., & Alemi, M. (2016). Cognitive-Social Robotics: Mysteries and Needs. Iranian Journal of Engineering Education, 18(70), 55-76. [In Persian]

[21] Costa, M. F., Ribeiro, C., Coutinho, C., & Rocha, M. (2008). A Study of educational robotics in elementary schools. Selected Papers on Hands-on Science, 1, 580-595.

[22] Portsmore, M., Cyr, M., & Rogers, C. (2001). Integrating the Internet, LabVIEW™, and Lego Bricks into Modular Data Acquisition and Analysis Software for K-College. age, 5, 2.

[23] Nagchaudhuri, A., Singh, G., Kaur, M., & George, S. (2002). LEGO robotics products boost student creativity in precollege programs at UMES. Paper presented at the Frontiers in Education, 2002. FIE 2002. 32nd Annual.

[24] Mikropoulos, T. A., & Bellou, I. (2013). Educational robotics as mindtools. Themes in Science and Technology Education, 6(1), 5-14.

[25] Lund, H. H., & Pagliarini, L. (2000). Robocup jr. with lego mindstorms. Paper presented at the Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on.

[26] Sklar, E., Eguchi, A., & Johnson, J. (2003). RoboCupJunior: learning with educational robotics. AI Magazine, 24(2), 43.

[27] Malec, J. (2001). Some thoughts on robotics for education. Paper presented at the 2001 AAAI Spring Symposium on Robotics and Education.

[28] Nabe, S., Cowley, S. J., Kanda, T., Hiraki, K., Ishiguro, H., & Hagita, N. (2006). Robots as social mediators: coding for engineers. Paper presented at the Robot and Human Interactive Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium on.

[29] Wyrobek, K. A., Berger, E. H., Van der Loos, H. M., & Salisbury, J. K. (2008). Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot. Paper presented at theRobotics and Automation, 2008. ICRA 2008. IEEE International Conference on.

[30] Barnes, D. J. (2002). Teaching introductory Java through LEGO MINDSTORMS models. Paper presented at the ACM SIGCSE Bulletin.

[31] Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science. Paper presented at the ACM SIGCSE Bulletin.

[32] Beer, R. D., Chiel, H. J., & Drushel, R. F. (1999). Using autonomous robotics to teach science and engineering. Communications of the ACM, 42(6), 85-92.

[33] Nourbakhsh, I. R., Crowley, K., Bhave, A., Hamner, E., Hsiu, T., Perez-Bergquist, A., . . . Wilkinson, K. (2005). Therobotic autonomy mobile robotics course: Robot design, curriculum design and educational assessment. Autonomous Robots, 18(1), 103-127.

[34] Moore, V. S. (1999). Robotics: Design through Geometry. Technology Teacher, 59(3), 17-22.

[35] Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas: Basic Books, Inc.

[36] Mataric, M. J., Koenig, N. P., & Feil-Seifer, D. (2007). Materials for Enabling Hands-On Robotics and STEM Education. Paper presented at the AAAI springsymposium: Semantic scientific knowledge integration.

[37] Teixeira, J. (2006). Aplicações da robótica no ensino secundário: o sistema lego mindstorms e a física. Dissertação de Mestrado. Coimbra: Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

[38] Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of Research on Technology in Education, 39(3), 229-243.

[39] Bers, M., Ponte, I., Juelich, K., Viera, A., &Schenker, J. (2002) Teachers as designers: Integrating robotics in early childhood education. Information Technology in childhood education 1, 123-145.

[40] Botelho, S. S., Braz, L. G., & Rodrigues, R. N. (2012). Exploring creativity and sociability with an accessible educational robotic kit. Paper presented at the Proc. 3rd Int. Conf. on Robotics in Education (RiE 2012), Prague, Czech Republic.

[41] Chu, K.-H., Goldman, R., & Sklar, E. (2005). Roboxap: an agent-based educational robotics simulator. Paper presented at the Agent-based Systems for Human Learning Workshop at AAMAS-2005.

[42] Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153-169.

[43] Faisal, A., Kapila, V., & Iskander, M. G. (2012). Using robotics to promote learning in elementary grades. Paper presented at the 119th ASEE Annual Conference and Exposition.

[44] Han, J., & Kim, D. (2009). r-Learning services for elementary school students with a teaching assistant robot. Paper presented at the Human-Robot Interaction (HRI), 2009 4th ACM/IEEE International Conference on.

[45] Herrmann, G., Pearson, M., Lenz, A., Bremner, P., Spiers, A., & Leonards, U. (2013). Social Robotics: 5th International Conference, ICSR 2013, Bristol, UK, October 27-29, 2013, Proceedings (Vol. 8239): Springer.

[46] Jeschke, S., Kato, A., & Knipping, L. (2008). The engineers of tomorrow: Teaching robotics to primary school children. Paper presented at the Proceedings of SEFI Annual Conference 2008.

[47] Miller, D., & Stein, C. (2000). ‘So That’s What Pi is For!’and Other Educational Epiphanies from Hands on Robotics: Morgan Kaufmann.

[48] Stein, S. J., McRobbie, C. J., & Ginns, I. S. (1999). Introducing technology education: Using teachers' questions as a platform for professional development. Research in Science Education, 29(4), 501-514.

[49] Vernado, T. (2000). Robotics across the curriculum. Tech Directions, 60(4), 22.

[50] Mataric, M. J. (2004). Robotics education for all ages.Paper presented at the Proc. AAAI Spring Symposium on Accessible, Hands-on AI and Robotics Education.

[51] Eguchi, A. (2013). Educational Robotics Theories and Practice: Tips for how to do it Right. Robotics: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and Applications, 193.

[52] Ackermann, E. (1996). Perspective-taking and object construction: Two keys to learning. Constructionism in practice: designing, thinking, and learning in a digital world, Lawrence Erlbaum, Mahwah, NJ, 25-35.

[53] Ackerman, E. (2001). Piaget’s Constructivism. Papert’s Constructionism: What’s the difference.

[54] Piaget, J. (1929). The child’s concept of the world. Londres, Routldge & Kegan Paul.

[55] Piaget, J. (1954). The Construction of Reality in the Child. New York: Basic Books.

[56] Papert, S. (1986). Constructionism: A new opportunity for elementary science education: Massachusetts Institute of Technology, Media Laboratory, Epistemology and Learning Group.

[57] Papert, S. E., & Harel, I. E. (1991). Constructionism. New York: Ablex Publishing.

[58] Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood classroom. United States of America: Teachers College, Columbia University.

[59] Papert, S. (1993). The children's machine: Rethinking school in the age of the computer: Basic Books.

[60] Ackermann, E. K. (2004). Constructing knowledge and transforming the world. A learning zone of one’s own: Sharing representations and flow in collaborative learning, 10(1/2), 19-44.

[61] Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.

[62] Kelly, G. A. (1955). The psychology of personal constructs. Volume 1: A theory of personality: WWNorton and Company.

[63] Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development.

[64] Woffinden, S., & Packham, J. (2001). Experiential learning, just do it! The Agricultural Education Magazine, 73(6), 8.

[65] Barrows, H. S. (1996). What Your Tutor May Never Tell You: A Medical Student's Guide to Problem-based Learning (PBL): Southern Illinois University School of Medicine.

[66] Pressley, M. (1996). The Challenges of Instructional Scaffolding: The Challenges of InstructionThat Supports Student Thinking. Learning Disabilities Research and Practice, 11(3), 138-146.

[67] Norman, G., &Schmidt, H. G. (1992). The psychological basis of problem-based learning: a review of the evidence. Academic medicine, 67(9), 557-565.

[68] Albanese, M. A., & Mitchell, S. (1993). Problem-based learning: A review of literature on its outcomes and implementation issues. ACADEMIC MEDICINE-PHILADELPHIA-, 68, 52-81.

[69] Hmelo, C. E., Gotterer, G. S., & Bransford, J. D. (1997). A theory-driven approach to assessing the cognitive effectsof PBL. Instructional science, 25(6), 387-408.

[70] Deen, M., Bailey, S., & Parker, L. (2001). View life skills. Retrieved on April, 28, 2010.

[71] Slavin, R. E., & Davis, N. (2006). Educational psychology: Theory and practice.

[72] O' Donnel, A. M., Reeve, J., & Smith, J. K. (2007). Educational psychology: Reflection for action. USA: Wiley.

[73] Schunk, D. H. (2000). Learning theories an educational perspective upper Saddle River,: NJ: Prentice-Hall.

[74] Richardson, V. (1997). Constructivist teaching and teacher education: Theory and practice. Constructivist teacher education: Building a world of new understandings, 3-14.

[75] Swan, K. (2005). A constructivist model for thinking about learning online. Elements of quality online education: Engaging communities, 6, 13-31.

[76] Cavicchi, E., Chiu, S.-M., & McDonnell, F. (2009). Introductory paper on criticalexplorations in teaching art, science, and teacher education. The New Educator, 5(3), 189-204.

[77] Duckworth, E. (2006). The having of wonderful ideas and other essays on teaching and learning: Teachers College Press.

[78] Duckworth, E. (2005). Critical exploration in the classroom. The New Educator, 1(4), 257-272.

[79] Eguchi, A. (2017). Bringing Robotics in Classrooms Robotics in STEM Education (pp. 3-31): Springer.

[80] Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational psychology review, 16(3), 235-266.

[81] Alimisis, D., Karatrantou, A., & Tachos, N. (2005). Technical school students design and develop robotic gear-based constructions for the transmission of motion. Paper presented at the Eurologo, (pp. 76-86).

[82] Erwin, B., Cyr, M., & Rogers, C. (2000). Lego engineer and robolab: Teaching engineering with labview from kindergarten to graduate school. International Journal of Engineering Education, 16(3), 181-192.

[83] Mota, M. I. G. (2007). Work in progress-using lego mindstorms and robolab as a mean to lowering dropout and failure rate in programming course. Paper presented at the Frontiers In Education Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports, 2007. FIE'07. 37th Annual.

[84] Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’learning. Education and information technologies, 9(2), 147-158.

[85] Shariatmadari, A. (2002). Principles and Philosophy of Education. Tehran: Amir Kabir. [In Persian]

[86] Cubberly, E. (1916). Public school administration: A statement of the principles underlying the organization and administration of public education: Boston MA: Houghton Mifflin.

[87] Nations, U. (2001). United Nations Convention on the Rights of a Child Article. Retrieved from:
http://www.unhchr.ch/tbs/doc.nsf/(symbol)/CRC.GC.2001.1.En?OpenDocument

[88] National Center for Research in Teacher Learning, C. o. E. (1993). How teachers learn to engage students in active learning,”. Retrieved from:
http://fliphtml5.com/ulrz/aotf/basic

[89] Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking: Prentice Hall.

[90] Chambers, J. M., & Carbonaro, M. (2003). Designing, developing, and implementing a course on LEGO robotics for technology teacher education. Journal of Technology and Teacher Education, 11(2), 209-241.

[91] Papanikolaou, K., & Frangou, S. (2009). Robotics as learning tool. Teacher education on Robotics-enhanced constructivist pedagogical models, 103-137.

[92] Datteri, E., Zecca, L., Laudisa, F., & Castiglioni, M. (2012). Explaining robotic behaviors: a case study on science education. Paper presented at the Proceedings of 3rd International Workshop Teaching Robotics, Teaching with Robotics Integrating Robotics in School Curriculum.

[93] Cavas, B., Kesercioglu, T., Holbrook, J., Rannikmae, M., Ozdogru, E., & Gokler, F. (2012). The effects of robotics club on the students’ performance on science process & scientific creativity skills and perceptions on robots, human and society. Paper presented at the Proceedings of 3rd International Workshop Teaching Robotics, Teaching with Robotics Integrating Robotics in School Curriculum, (pp. 40-50).

[94] Denis, B., & Hubert, S. (2001). Collaborative learning in an educational robotics environment. Computers in Human Behavior, 17(5), 465-480.

[95] Vygotsky, L. S. (1962). Piaget's Theory of Child Language and Thought.

[96] Lewis, R. (1996). Working and learning in distributed communities. Computer Supported Learning Environments, Universidad Autonoma de Madrid.

[97] Charlier, B., Daele, A., Cheffert, J.-L., Peeters, R., & Lusalusa, S. (1999a). Learning collaboratively in a virtual campus: teachers’ experiences. Paper presented at the ISATT 99 conference, Dublin (Ireland).

[98] Charlier, B., Docq, F., Lebrun, M., Lusalusa, S., Peeters, R., & Deschryver, N. (1999b). Tuteurs en ligne: quels rôles, quelle formation?

[99] Petters, R. (1998). Learning collaboratively in a virtual campus. Learn-Nett, WP4.

[100] Ainscow, M., Dyson, A., & Kerr, K. (2006). Equity in education: mapping the territory: The first annual report of the Centre for Equity in Education. Manchester, UK: University of Manchester, Centre for Equity in Education.

[101] Hirsch Jr, E. D., Kett, J. F., & Trefil, J. S. (1988). Cultural literacy: What every American needs to know: Vintage.

[102] Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation: Cambridge university press.

[103] Kozol, J. (2005) The shame of the nation: The restoration of apartheid schooling in America, Broadway Books.

[104] Darling-Hammond, L. (2005). New standards and old inequalities: School reform and the education of African American students. Black education: A transformative research and action agenda for the new century, 197-223.

[105] Ferguson, R. F. (1991). Paying for public education: New evidence on how and why money matters. Harv. J. on Legis., 28, 465.

[106] Dreeben, R. (1987). Closing the Divide: What Teachers and Administrators Can Do to Help Black Students Reach Their Reading Potential. American Educator: The Professional Journal of the American Federation of Teachers, 11(4), 28-35.

[107] Rykowski, J. (2013). Robots in the Classroom: A Platform for Driving Interest in the Science, Technology, Engineering, and Math Disciplines. partial fulfillment of the Master Teacher Program, a 2 year faculty professional development program.

[108] Weinberg, J. B., & Yu, X. (2003). Low-cost platforms for teaching integrated systems. Robotics & Automation Magazine, IEEE.

[109] Bredenfeld, A., & Leimbach, T. (2010). The roberta initiative. Paper presented at the Workshop Proceedings of Intl. Conf. on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2010).

[110] Catlin, D., & Robertson, S. (2012). Using educational robots to enhance the performance of minority students. Paper presented at the TRTWR 2012 Conference, Riva La Garda Italy.

[111] Lee, C. D. (2005). Intervention research based on current views of cognition and learning Black education: A transformative research and action agenda for the new century: American Educational Research Association.

[112] Council, N. R. (2000). How people learn: Brain, mind, experience, and school: Expanded edition: National Academies Press.

[113] Nasir, N. i. S., Rosebery, A. S., Warren, B., & Lee, C. D. (2006). Learning as a cultural process: Achieving equity through diversity.

[114] Bouillion, L. M., & Gomez, L. M. (2001). The case for considering cultural entailments and genres of attachment in the design of educational technologies. Paper presented at the Smart machines in education.

[115] Gay, G. (2000). Culturally Responsive Teaching: Theory, Research, and Practice: Teachers College Press.

[116] Alemi, M., Meghdari, A., Basiri, N. M., & Taheri, A. (2015). The effect of applying humanoid robots as teacher assistants to help Iranian autistic pupils learn English as a foreign language. Paper presented at the International Conference on Social Robotics.

[117] Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice: Teachers College Press.

[118] Catlin, D., & Blamires, M. (2010). The Principles of Educational Robotic Applications (ERA): A framework for understanding and developing educational robots and their activities.

[119] Simons, G. (1986). Is man a robot?

[120] Goldman, L. R. (1998). Child's Play: Myth, Mimesis and Make-Believe: ERIC.

[121] Technology, V. (2009). Robot Rally Race. Retrieved from:http://www.valiant-technology.com/uk/pages/activity_ search.php