فصلنامه علمی

نوع مقاله: مقاله پژوهشی

نویسندگان

مهندسی فنّاوری اطالعات، دانشکده فنی و مهندسی، دانشگاه تربیت مدرّس،تهران،ایران

چکیده

سامانه­های آموزشیار هوشمند به عنوان محیطی شخصی شده و مبتنی بر توانمندی و ویژگی­های یادگیری در نظام آموزش الکترونیکی، محیطی پیچیده، پویا و همراه با عدم قطعیت است. پایش این محیط برای استخراج ویژگی­ها و مدل­سازی دقیق یادگیرنده کاری زمان­بر و سخت است. هدف از این مقاله، ارائه چارچوبی انعطاف­پذیر با بهره­گیری از قابلیت­های کارگزار در پایش مستمر یادگیرنده و ارائه تعاملات زیر سیستم­های سامانه آموزشیار هوشمند به طور بهینه و به نمایندگی از آموزشگر است. در این تحقیق در مرحله اول از نظریه سبک یادگیری برای شناخت رویکردهای یادگیری یادگیرنده و از شبکه بیز برای کاهش عدم قطعیت این شناخت استفاده شده است. در مرحله بعد با تلفیق نتایج مرحله اول با توانمندی­های یادگیرنده (که از طریق نظریه پرسش- پاسخ حاصل شده است)،     توصیه­هایی در سه دسته به یادگیرنده، یاددهنده و نیز طراح محیط آموزشی ارائه می­شود. به همین دلیل معماری سامانه پیشنهادی در سه لایه ارائه شده که در لایه میانی آن چهار کارگزار وظیفه ایجاد مدل یادگیرنده و ارائه توصیه­های شخصی­شده مبتنی بر درس و ویژگی­های شخصی یادگیرنده را بر اساس پایش و به روز رسانی مدل یادگیرنده بر عهده دارند. پیاده سازی این سامانه در درس« زبان برنامه­نویسی C++» از مجموعه دروس رشته مهندسی کامپیوتر روی 30 نفر از دانشجویان مقطع کارشناسی، نتایج رضایت بخشی  را به همراه داشته؛ به طوری که میزان رضایت و موفقیت تحصیلی به دو برابر نسبت به قبل از به­کارگیری سامانه، بهبود یافته است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Multi Agent Intelligent Tutoring System Based on Bayesian Network

نویسندگان [English]

  • N. Saberi
  • Gh.A. Montazer

Information Technology Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

چکیده [English]

Environmental monitoring for extraction of learner’s features and accurately learner modeling is a time and cost consuming task. This paper proposes a flexible framework using agent architecture capabilities in learners’ monitoring and also in optimization of Intelligent Tutoring subsystems interactions. In this research learner’s learning approaches have been recognized by learning style theory then their uncertainty has been reduced by Bayesian Network. This framework prepares recommendations by combination of learners’ learning style and learner’s abilities (that are computed by Item Response Theory (IRT)) for three groups: learners, tutors and system designer. The architecture of proposed tutoring system has been presented in three layers. In middle layer there are four agents that monitor learners, create learner’s model, update it and prepare some recommendations based on courseware features, learner’s abilities and his/her learning style. A study was conducted on 30 Computer Engineering students during one semester. The implementation of the proposed system on participants indicates an increase in all evaluation factors, for example it doubles educational success rate and learner’s satisfaction rate. 

کلیدواژه‌ها [English]

  • e-Learning
  • Intelligent Tutoring System(ITS)
  • Item Response Theory(IRT)
  • Learning style
  • Bayesian Network
  • Multi Agent Architecture

1 ]صابری نفیسه و منتظر غالم علی، پایش، ارزیابی و گروه بندی یادگیرندگان در محیط یادگیری الکترونیکی مبتنی بر نظریات یادگیری و نظریه پرسش و پاسخ، اولین کنفرانس مدرسه هوشمند، اسفند 1031. [2] Graf S., Adaptivity in Learning Management Systems Focussing on Learning Styles, phd thesis, Vienna University of Technology Faculty of Informatics, 2007. [3] Chih-Ming c. and Ling-jung D., Personalized web-based tutoring system based on fuzzy item response theory, Expert system with Applications,Vol.4, 2008, pp. 2298-2315. [4] Essalmi F., Jemni Ben Ayed L., Jemni M., Kinshuk., and GrafS, A fully personalization strategy of E-learning scenarios, 2010. [5] Baylari A. and Montazer Gh.A., Design a personalized e-learning system based on item response theory and artificial neural network approach, Expert Systems with Applications, Vol.36 , 2009, pp.8013–8021. [6] Conati C., Gertner A. and Vanlehn K., Using Bayesian Networks to manage Uncertainty in Student Modeling, User Modeling and UserAdapted Interaction,Vol.4, 2002, pp.371-417. [7] Suebnukarn. and haddawy., A Bayesian approach to generating tutorial hints in a collaborative medical problem-based learning system, Artificial intelligence in medicine, Vol.38, 2006, pp.5-24. [8] Schiaffino S., Garcia P. and Amandi A., e Teacher: Providing personalized assistance to elearning students, Computers & Education, Vol. 51, 2008, pp.1744–1754. [9] Botsios S., Georgiou D. and SafourisN., Contributions to Adaptive Educational Hypermedia Systems via on-line Learning Style Estimation, Educational Technology & Society, Vol.11 , 2008, pp. 322-339. [10] Kritikou Y., Demestichas p., Adamopoulou E., DemestichasK., Theologou M. and Paradia M., User profile in the context of web-based Learning management systems, Network and Computer Applications,Vol.31, 2008, pp.603-627. [11] Xu D. and Wang H., Intelligent agent supported personalization for virtual learning environments, Decision Support Systems, Vol.42, 2006, pp.825-843. [12] Weiss G., Multiagent Systems A Modern Approach to Distributed Modern Approach to Artificial Intelligence, MIT Press, Chapter 1, 1999. [13] Dag F. and Grecer A., Relations between online learning and learning styles, procedia social and behavioral sciences,Vol.1, 2009, pp.862-871. [14] Ozpolat E. and Akar G., Automatic detection learning styles for an e-learning system, computers & education,Vol.53, 2009, pp.355-367. [15] Kappe F., Boekholt L., Rooyen C. and Vander Flier H., A Predictive Validity study of the Learning Style Questionnaire (LSQ) using multiple specific learning criteria, Learning and Individual Differences,Vol.19, 2009, pp.464-467. [16] Congdom P., Applied Bayesian Modeling, Willey, 2003. [17] Jensen F.V., an Introduction to Bayesian Networks, Springer-Verlag, New York, 1996. [18] Wooldridge M., an Introduction to Multi- Agent Systems, John Wiely & Sons, Chapters 1 & 2, 2002. طراحی و پیاده سازی سامانه چندکارگزاره ... نشریه علمی پژوهشی فناوری آموزش، سال پنجم، جلد 5 ،شماره 2 ،زمستان 9831 [19] Russell R., Norvig P., Artificial Intelligence: a Modern Approach, (2th edn), New Jersey, Prentice-Hall, Inc, 2003. [20] Rabbat R., Bayesian Expert systems and multi Agent modeling for Learner-centric web based education, PHD thesis, Massachusetts Institute of technology, 2005. [21] Baker F., The basics of item response theory, ERIC clearinghouse on Assessment and Evaluation, Second edition, 2001. ]22 ]صابری نفیسه و منتظر غالمعلی، بهینه سازی نظریه پرسش و پاسخ مبتنی بر منطق فازی برای شخصی سازی سیستم آموزشـیار هوشـمند، دهمین کنـفرانس سیـستمهای فـازی ایران، دانشگاه شهید بهشتی، تیر 1031. [23] Saberi N. and Montazer G.A., Personalized Intelligen Tutoring System based on fuzzy learner model and fuzzy pedagogical module, 4th ICFIE, Shomal University, Iran, 2010. [24] Garcia S. and Amandi., An enhanced Bayesian model to detect students' learning styles in webbased courses, computer assisted learning, Vol.24, 2008, pp.305-315. [25] Saberi N. and Montazer G.A., The Extraction of Learner’s Ability in E-Learning Envirnoment Using Bayesian Network, china, ETT 2010, IEEE index, 2010.