فصلنامه علمی

نوع مقاله: مقاله مروری

نویسندگان

1 گروه علوم تربیتی، دانشکده علوم تربیتی و روانشناسی، دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم تربیتی، دانشکده علوم انسانی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

پیشینه و اهداف: برای استفاده اثربخش از شبکه‌های اجتماعی نیازمند شناسایی و به‌کارگیری پیامدهای نظریه‌های حمایت‌کننده استفاده از شبکه‌های اجتماعی هستیم. نظریه‌های یادگیری متفاوت تفاسیر متنوعی از یادگیری فراهم می‌کنند. نظریه‌های یادگیری متفاوت منجر به جهت‌گیری‌ها و نتایج مختلفی در برنامه‌ریزی درسی می‌شوند؛ ازاین‌رو نظریه‌های یادگیری به‌عنوان چارچوب برای هدایت تصمیم‌گیری‌ها در طول طراحی و اجرای برنامه درسی عمل می‌کنند. هدف از انجام این پژوهش شناسایی انواع نظریات یادگیری حمایت‌کننده استفاده از شبکه‌های اجتماعی و واکاوی نظریه‌های یادگیری در شبکه‌های اجتماعی به‌منظور بسترسازی نظری برای طراحی برنامه درسی بود.
روش‌ها‌: برای این پژوهش از روش تحلیل محتوای کیفی استفاده شد. جامعه آماری این پژوهش را کلیه اسناد و مدارک معتبر مرتبط با موضوع، از سال 1995 تا سال 2018 تشکیل می‏دهد که محتوای آن‏ها به روش نمونه‏گیری هدفمند و بر اساس انتخاب نظریه‌های حمایت‌کننده یادگیری در شبکه‌های اجتماعی که تعداد آن‌ها  30 مورد بود، مورد تحلیل قرار گرفت. واحد تحلیل آن مضمون (تم) است. برای تحلیل یافته‌ها، پس از کدگذاری باز، طبقات اصلی و فرعی استخراج شد. جهت اطمینان از روایی پژوهش، از روش‌های بررسی توسط اعضا، مثلث‌سازی منابع داده‌ها و بازبینی توسط همکاران استفاده شد و برای اطمینان از پایایی، روش توافق بین دو کدگذار به کاربرده شد.
یافته‌ها: یافته‌ها، انواع نظریه‏های زمینه‏محور، اجتماع‏محور و فردمحور حمایت‏کننده یادگیری در شبکه‏های اجتماعی را مشخص کرد. همچنین یافته‌ها، 4 طبقه اصلی شاملِ ابعاد شبکه‌های اجتماعی، تعاملات شبکه‌ای، انواع یادگیری و عناصر برنامه درسی را نشان داد. یافته‌ها بیانگر این نکته است که روابط شبکه‌ای در شبکه‌های اجتماعی شامل تعامل اجتماعی، ارتباطات بین فردی و ارتباط تعاملی با ادمین و ارتباط استاد و دانشجو است که این تعاملات گسترده و مبتنی بر تشریک‌مساعی، توافق محوری و مبتنی بر اشتراک عقاید است. انواع یادگیری در شبکه‌های اجتماعی، شامل ِ یادگیری شبکه‌ای، یادگیری موقعیتی، یادگیری مسأله محور، یادگیری شخصی و یادگیری غیرمستقیم است. عناصر برنامه درسی دربردارنده‌ی اهداف شبکه‌ای، محتوای شبکه‌ای، محیط یادگیری شبکه‌ای، فراگیر شبکه‌ای و ارزشیابی شبکه‌ای بود. اهداف شبکه‌ای، ویژگی‌هایی از قبیل پیش‌بینی‌نشده، واگرا، از پیش تعیین‌شده نبودن، متغیر بودن، عدم خطی بودن، منعطف، ارزشی، زایشی و تعاملی را دارند. محتوای شبکه‌ای از ویژگی‌هایی مثل دانش توزیع‌شده، تعدد منابع، منابع قابل‌اعتماد، دسترس‌پذیری، دانش زمینه محور، دانش اشتراکی، دانش فراگیر، اطلاعات خودمحور، خلق داوطلبانه دانش و محتوای تبادل‌پذیر برخوردارند. محیط شبکه‌ای شامل ویژگی‌های فنی و آموزشی هستند. ازجمله ویژگی‌های فنی این محیط می‌توان به تنوع زبان، وجود ابزارهای ارتباطی، امکان سفارشی‌سازی پیام و شبیه‌سازی ارتباطات اشاره کرد. ویژگی‌های آموزشی این محیط نیز شاملِ غنی بودن از ابزارهای مدیریت دانش، شناخت موقعیتی، اطلاعات شخصی‌سازی‌شده، محیط باز و منعطف، است. فراگیر شبکه‌ای، آگاه و بروز، مستقل و فعال است که توانایی انجام چند کار را باهم دارد. فراگیر شبکه‌ای، بازیگر و عامل اجتماعی است که به پردازش منظم، انتشار و مدیریت دانش می‌پردازد. ارزشیابی در شبکه‌های اجتماعی نیز فرآیندی، غیرخطی، تکوینی، آگاهانه، سریع و مداوم است که با حذف رتبه‌ها و آزمون‌های استاندارد همراه است.
نتیجه‌گیری: بر اساس نتایج پژوهش پیشنهاد می‌شود متصدیان امر تعلیم و تربیت از مختصات عناصر برنامه درسی مبتنی بر شبکه‌‌های اجتماعی برای طراحی برنامه درسی مبتنی بر شبکه‌های اجتماعی استفاده کنند. همچنین  برای تحقیقات آتی نیز پیشنهاد می‌شود که یافته‌های این پژوهش را در محیط‌های آموزشی آزمایش و اجرا کنند تا گامی مثبت در جهت استفاده بهینه از شبکه‌های اجتماعی برای یادگیری فراگیران برداشته شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating learning Theories in Social Networks; Providing a Theoretical Framework for Curriculum Designing

نویسندگان [English]

  • S. Hamedinasab 1
  • M. Ayati 1
  • M.َA. Rostaminejad 1
  • F. Seraji 2

1 Department of Education, Faculty of Education and Psychology, University of Birjand, Birjand, Iran

2 Department of Educational Sciences, Faculty of Humanities, Bu-Ali Sina University, Hamadan, Iran

چکیده [English]

Background and Objectives: To use social media effectively, we need to identify and apply the implications of supportive theories using social media. Different learning theories provide a variety of interpretations of learning. Different learning theories lead to diverse orientations and outcomes in curriculum planning. Therefore, learning theories serve as a framework for guiding decisions during the design and implementation of the curriculum. The aim of this study was to identify the types of learning theories that support the use of social networks and to analyze learning theories on social networks in order to provide a theoretical basis for designing curricula.
Materials and Method: For this study, qualitative content analysis method was used. The statistical population of this study consists of all valid documents related to the subject- supportive theories of learning in social networks- from 1995 to 2018 (n=30) selected based on purposeful sampling. The content of 30 documents were analyzed.  The analysis unit is the theme. To analyze the findings, the main and sub-classes were extracted after open coding. To ensure the validity of the research, the methods of review by members, triangulation of data sources and review by colleagues were used, and to ensure reliability, the agreement method between the two coders was used.
Findings: The findings showed a variety of context-based, community-based, and person-centered theories that support learning on social media. The findings also include four main categories: It showed the dimensions of social networks, network interactions, types of learning, and curriculum elements. It was shown that network communication in social networks includes social interaction, interpersonal communication and interactive communication with admin and teacher-student communication, which is broad and based on community sharing, central agreement and based on sharing ideas. Types of learning on social networks include; network learning, situational learning, problem-based learning, personal learning, and indirect learning. Elements of the curriculum include; network objectives, network content, network learning environment, network inclusiveness, and network evaluation. Network Objectives; features such as unpredictability, divergence, unpredictability, variability, nonlinearity, flexibility, value, reproductive and interactive. Network content has some features such as distributed knowledge, multiplicity of resources, reliable resources, accessibility, context-based knowledge, shared knowledge, inclusive knowledge, self-centered information, voluntary knowledge creation, interchangeable content. The network environment includes technical and educational features. Among the technical features of this environment, we can mention the diversity of language, the existence of communication tools, the possibility of customizing the message and simulating communication. The educational features of this environment also include; being rich is one of the tools of knowledge management, situational awareness, personalized information, open and flexible environment. The network learner is knowledgeable and up-to-date, independent and active, able to do several things together. The network learner is an actor, and social agent who processes, publishes, and manages knowledge on a regular basis. Evaluation on social media is a nonlinear process, formative, conscious, and continuous that is accompanied by the elimination of standard rankings and tests.
Conclusion: Based on the research results, it is suggested that those in charge of education use the coordinates of social network-based curriculum elements to design a curriculum based on social networks. For further research it is suggested that researchers implement the findings in an experimental environment to take a positive step towards the optimal use of social networks to learners’ learning outcome.

کلیدواژه‌ها [English]

  • Learning Theories
  • Social Networks
  • Curriculum

[1] Maleki H. Curriculum (Action guide). Tehran: Borhan School of Culture Institute Publications; 2005. Persian.

 

[2] Barani G, Azma F, Seyyedrezai SH. Quality indicators of hidden curriculum in centres of higher education. Procedia-Social and Behavioral Sciences. 2011; 30:1657-61.

 

[3] Eisner E W. The educational imagination. 1985; New York: Macmillan.

 

[4] Maleki H. Introduction to social education activities (extracurricular). Tehran: Aig; 2007. Persian.

 

[5] Musapour N, Falahati L, Mazinani M. [Assessing the effects of informal curriculum on Farhangian University in fulfilling the mission of teacher training]. Quarterly Journal of Curriculum Studies. 2017; 12(47): 1-36. Persian.

 

[6] Abbasi Kassani H, Shams Morkani G. ]Technology growth, learning change[. Technology Growth. 2019; 14 (54): 17-25. Persian.

 

[7] Haythornthwaite C. Participatory transformations. In W Cope and M Kalantzis (Eds.), Ubiquitous learning. Urbana, IL: University of Illinois Press; 2009. Pp. 31-48.

 

[8] Boyd DM, Ellison NB. Social network sites: Definition, history, and scholarship. Journal of computer‐mediated Communication. 2007;13(1):210-30.

 

[9] Manasijević D, Živković D, Arsić S, Milošević I. Exploring students’ purposes of usage and educational usage of Facebook. Computers in Human Behavior. 2016; 60:441-50.

 

[10] Manca S, Ranieri M. Facebook and the others. Potentials and obstacles of social media for teaching in higher education. Computers & Education. 2016; 95:216-30.

 

[11] Lim J, Richardson JC. Exploring the effects of students' social networking experience on social presence and perceptions of using SNSs for educational purposes. The Internet and Higher Education. 2016; 29:31-9.

 

[12] Eid MI, Al-Jabri IM. Social networking, knowledge sharing, and student learning: The case of university students. Computers & Education. 2016; 99:14-27.

 

[13] Buragga K, Dhir A, Boreqqah AA. Facebook an open education platform: Exploring its educational uses. In International Conference on Human-Computer Interaction 2013 Jul 21 (pp. 18-22).

 

[14] Van Der Rhee B, Verma R, Plaschka GR, Kickul JR. Technology readiness, learning goals, and eLearning: Searching for synergy. Decision Sciences Journal of Innovative Education. 2007; 5(1):127-49.

 

[15] Leach J, Moon B. Pedagogy, information and communications technology and teachers' professional knowledge. The Curriculum Journal. 2000; 11(3):385-404.

 

[16] Dede C. Emerging influences of information technology on school curriculum. Journal of Curriculum Studies. 2000; 32(2):281-303.

 

[17] Liebarman A, Mace DP. Making practice public: Teacher learning in the twenty-first century. Journal of Teacher Education. 2010; 61(1-2):77-88.

 

[18] Rezaei J, Nesari S. [Theoretical framework for communicative educational design model]. Educational Technology. 2013; 6(29): 36-40.Persian.

 

[19] Pakseresht M. [Educational theories and challenges of theory of theory]. Quarterly Journal of Educational Innovation. 2007; 20: 125-148.Persian.

 

[20] Mugisha WR, Mugimu CB. Application of learning theories in curriculum development and implementation of the MLT diploma programme in Uganda. Journal of Education, Society and Behavioural Science. 2015; 5(3): 256-75.

 

[21] Izadi, S, Salehi Omran I, Mansouri Kelley S. ]Investigating the professional competencies of middle school male teachers based on the constructivist approach[. Education and Learning Studies. 2013; 1(1): 4-28. Persian.

 

[22] Rainie H, Wellman B. Networked: The new social operating system. Cambridge, MA: Mit Press; 2012 Apr 27.

[23] Zarei J. ]Knowledge and learning: Fundamentals of communication theory[. Journal of Information and Communication. 2015; 1 (3 & 4): 141-152. Persian.

 

[24] Karami M, Karami Z, Attaran M. ]Developing content knowledge and teaching skills for teacher students through a problem-based integration model of information and communication technology[. Journal of Information and Communication Technology in Educational Sciences. 2013; 2(3): 173- 151. Persian.

 

[25] Naeemi Hosseini F, Zare H, Hormozi M, Shaghaghi F, Kaveh, M. ]The effect of integrated situation learning on academic motivation, academic achievement, and student test anxiety[. Curriculum Research. 2012; 1(2): 177-200. Persian.

 

[26] Naseri H, Norouzi R, Meibodi M. Personalization of adaptive e-learning in distributed agent-based environments, 13th Annual Iranian Computer Society Conference, Kish Island, Computer Society, Sharif University of Technology. 2008. Persian.

 

[27] Lisbôa ES, Coutinho CP. Informal learning in social networks: A study of the Orkut social network. Issues in Educational Research. 2011; 21(2):162-74.

 

[28] Greenhow C, Robelia B. Informal learning and identity formation in online social networks. Learning, media and technology. 2009; 34(2):119-40.

 

[29] Rehm M, Notten A. Twitter as an informal learning space for teachers!? The role of social capital in Twitter conversations among teachers. Teaching and Teacher Education. 2016; 60:215-23.

 

[30] Barrot JS. Using Facebook-based e-portfolio in ESL writing classrooms: impact and challenges. Language, Culture and Curriculum. 2016; 29(3):286-301.

 

[31] Anders AD. Networked learning with professionals boosts students' self-efficacy for social networking and professional development. Computers & Education. 2018; 127:13-29.

 

[32] Elloitt K, Barnett S. A conceptual model for analysing informal learning in online social networks for health professionals. InInvesting in E-Health: People, Knowledge and Technology for a Healthy Future: Selected Papers from the 22nd Australian National Health Informatics Conference (HIC 2014) 2014 Aug 14 (Vol. 204, p. 80). IOS Press.

 

[33] Razak NA, Saeed M, Ahmad Z. Adopting Social Networking Sites (SNSs) as interactive communities among English foreign language (EFL) learners in writing: Opportunities and challenges. English Language Teaching. 2013; 6(11):187-98.

 

[34] Zaidieh AJ. The use of social networking in education: Challenges and opportunities. World of Computer Science and Information Technology Journal (WCSIT). 2012; 2(1): 18-21.

 

[35] Manca S, Ranieri M. Exploring digital scholarship: A study on use of social media for scholarly communication among Italian academics. In Research 2.0 and the impact of digital technologies on scholarly inquiry 2017 (pp. 117-142). IGI Global.

[36] Mehr Mohammadi, M. Curriculum: Views, approaches and perspectives. Mashhad: Astan Qods Razavi Publications; 2005. Persian.

 

[37] Zuga KF. Relating technology education goals to curriculum planning. 1989; 1(1): 1-14.

 

[38] Nández G, Borrego Á. Use of social networks for academic purposes: A case study. The electronic library. 2013; 781-791.

 

[39] Nguyen TT, Song I. Learning space model for educational social networks. In2016 International Joint Conference on Neural Networks (IJCNN) 2016 Jul 24 (pp. 3116-3123). IEEE.

 

[40] Wang HY, Zhang FB, Dilidaer K, Chen F, Zhao YJ, Ding JB. Using a variety of modern teaching methods to improve the effect of medical microbiology teaching. Procedia Computer Science. 2019; 154:617-21.

 

[41] Lytvynova S, Pinchuk O. The Evolution of Teaching Methods of Students in Electronic Social Networks.

 

[42] Sarapin SH, Morris PL. Faculty and Facebook friending: Instructor–student online social communication from the professor's perspective. The Internet and Higher Education. 2015; 27:14-23.

 

[43] Carr D, Oliver M, Burn A. Learning, teaching and ambiguity in virtual worlds. In Researching learning in virtual worlds 2010 (pp. 17-30). Springer, London.

 

[44] Stacey E, Rice M. (2002). Evaluating an online learning environment. Australasian Journal of Educational Technology. 2002; 18(3): 321- 339.

 

[45] Saidi, A. Using formative assessment and social media for effective learning.‏ Goteborgs Universitet: Anne Dragemark Oscarson; 2015.

 

[46] Zarei Zavaraki I, Ghorbani, H. [The impact of virtual social networks on English language learning for Students]. Proceedings of the National Conference on Virtual Social Networks, 2015. Persian.

 

[47] Vallance M, Towndrow PA. Towards the ‘informed use’of information and communication technology in education: a response to Adams’‘PowerPoint, habits of mind, and classroom culture’. Journal of Curriculum Studies. 2007; 39(2):219-27.

 

[48] Adel Mehraban M. A review of qualitative content analysis and its application in research. Isfahan: Isfahan University of Medical Sciences and Health Services. 2016. Persian.

 

[49] Von Glasersfeld E. Footnotes to ‘the many faces of constructivism’. Educational researcher. 1996; 25(6):19.

 

[50] Siemens G. Connectivism: Learning as network-creation. ASTD Learning News. 2005; 10(1):1-28.

 

[51] Lombardi MM. Authentic learning for the 21st century: An overview. Educause learning initiative. 2007; 1(2007):1-2.

 

[52] Atkinson R , Shiffrin RM. "Chapter: Human memory: A proposed system and its control processes". In Spence K W, Spence J T. (eds.). The psychology of learning and motivation. New York: Academic Press. 1968; Pp. 89–195.

 

[53] Daft RL, Lengel RH. Organizational information requirements, media richness and structural design. Management science. 1986; 32(5):554-71.

 

[54] Tolman EC. Cognitive maps in rats and men. Psychological review. 1948; 55(4):189.

 

[55] Coleman JS. Social capital in the creation of human capital. American journal of sociology. 1988; 94:S95-120.

 

[56] Bandura A. Social-learning theory of identificatory processes. Handbook of socialization theory and research. 1969; 3: 213-262.

                                               

[57] Karau SJ, Williams KD. Social loafing: A meta-analytic review and theoretical integration. Journal of personality and social psychology. 1993; 65(4):681.

 

[58] Bagozzi RP, Dholakia UM. Intentional social action in virtual communities. Journal of interactive marketing. 2002; 16(2):2-1.

 

[59] Sarasvathy SD. Causation and effectuation: Toward a theoretical shift from economic inevitability to entrepreneurial contingency. Academy of management Review. 2001; 26(2):243-63.

 

[60] Van Dyne L, Graham JW, Dienesch RM. Organizational citizenship behavior: Construct redefinition, measurement, and validation. Academy of management Journal. 1994; 37(4):765-802.

 

[61] Turner JH. A theory of social interaction. UK: Stanford University Press; 1988.

 

[62] Emerson RM. Social exchange theory. Annual review of sociology. 1976; 2(1):335-62.

 

[63] Kim AJ. Community building on the web: Secret strategies for successful online communities. UK: Addison-Wesley Longman Publishing Co., Inc.; 2000.

 

[64] Holt EB, Brown HC. Animal drive and the learning process, an essay toward radical empiricism. New York: H. Holt and Co; 1931.

 

[65] Wellman B. I was a teenage network analyst: the route from the Bronx to the information highway. Connections. 1994; 17(2):28-45.

 

[66] Lamb R, Kling R. Reconceptualizing users as social actors in information systems research. MIS quarterly. 2003; 27(2): 197-236.

 

[67] Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and intrinsic motivation to use computers in the workplace 1. Journal of applied social psychology. 1992; 22(14):1111-32.

 

[68] Ren Y, Kraut R, Kiesler S. Applying common identity and bond theory to design of online communities. Organization studies. 2007; 28(3):377-408.

 

[69] Knobel M, Lankshear C. Digital literacy and participation in online social networking spaces. Digital literacies: Concepts, policies and practices. 2008; 11: 249-278.

 

[70] Hannafin MJ, Land SM. The foundations and assumptions of technology-enhanced student-centered learning environments. Instructional science. 1997; 25(3):167-202.

 

[71] Ajzen I, Fishbein M. Theory of reasoned action-Theory of planned behavior. University of South Florida; 2007.

 

[72] Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly. 1989; 1:319-40.

 

[73] Mitchell VW. Understanding consumers’ behavior: Can perceived risk theory help. Management Decision. 1992; 30(3):26-31.

 

[74] Ajzen I. The theory of planned behavior. Organizational behavior and human decision processes. 1991; 50(2):179-211.

 

[75] Alderfer CP. Existence, relatedness, and growth: Human needs in organizational settings. Academic Press,1970.

 

[76] Zaichkowsky JL. The personal involvement inventory: Reduction, revision, and application to advertising. Journal of advertising. 1994; 23(4):59-70.

 

[77] McCrae RR, Costa Jr PT. Personality trait structure as a human universal. American psychologist. 1997; 52(5):509.    

 

[78] Oliver RL. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research. 1980; 17: 460-9.

 

[79] Ozturk HT. Examining value change in MOOCs in the scope of Connectivism and Open Educational Resources movement. The International Review of Research in Open and Distributed Learning. 2015; 16(5): 1-25. 

 

[80] Herrington J, Oliver R. An instructional design framework for authentic learning environments. Educational technology research and development. 2000; 48(3): 23-48.

 

[81] Blanchard AL. Testing a model of sense of virtual community. Computers in Human Behavior. 2008; 24(5): 2107-2123.

 

[82] Manca S, Ranieri M. Is it a tool suitable for learning? A critical review of the literature on F acebook as a technology‐enhanced learning environment. Journal of Computer Assisted Learning. 2013; 29(6):487-504.

 

 [83] Gonzalez R, Gasco J, Llopis J. University students and online social networks: Effects and typology. Journal of Business Research. 2019 1;101: 707-14.

 

[84] Milošević I, Živković D, Arsić S, Manasijević D. Facebook as virtual classroom–Social networking in learning and teaching among Serbian students. Telematics and Informatics. 2015; 32(4):576-85.

 

[85] Yago H, Clemente J, Rodriguez D, Fernandez-de-Cordoba P. ON-SMMILE: Ontology Network-based Student Model for MultIple Learning Environments. Data & Knowledge Engineering. 2018; 115:48-67.